International Journal of Legal Medicine

, Volume 133, Issue 4, pp 1177–1189 | Cite as

BioAlder: a tool for assessing chronological age based on two radiological methods

  • Øyvind BlekaEmail author
  • Veslemøy Rolseth
  • Pål Skage Dahlberg
  • Antoine Saadé
  • Marianne Saadé
  • Liliana Bachs
Original Article


We have created the tool BioAlder as an age prediction model based on the systems Greulich and Pyle (hand) and the Demirjian’s grading of the third molar tooth. The model compiles information from studies representing a total of 17,151 individuals from several parts of the world. The model offers a solution where issues as group-wise data format and age mimicry bias are bypassed. The model also provides a solution for combining the two grading systems, hand and tooth, to one combined age prediction result assuming independency. We have tested our model of age prediction and the independency assumption on a separate data set from Lebanon with 254 young individuals. The prediction intervals of BioAlder covered most of the data points; however, we observed some outliers. Our analyses indicate at least a weak dependency between the two methods.


Age estimation Demirjian’s Greulich and Pyle Conditional dependency 



We thank Jayakumar Jayaraman, Simon Camilleri, Rick R. van Rijn, Eugénia Cunha, Abdul Mueed Zafar, Bernhard Knell, and Ivan Galić for providing data, and Thore Egeland and Torbjørn Wisløff for useful discussions. We also want to thank the reviewers for their useful comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    European Asylum Support Office (2018) EASO. Age assessment practice in Europe. LuxemburgGoogle Scholar
  2. 2.
    Kreitner KF, Schweden F, Schild HH, Riepert T, Nafe B (1997) Computerized tomography of the epiphyseal union of the medial clavicle: an auxiliary method of age determination during adolescence and the 3d decade of life? RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 166(6):481–486PubMedCrossRefGoogle Scholar
  3. 3.
    Pyle SI, Hoerr NL (1955) Radiographic atlas of skeletal development of the knee: a standard of reference: ThomasGoogle Scholar
  4. 4.
    Greulich W, Pyle S (1959) Radiograph atlas of skeletal development of the hand and wrist, 2nd edn. Stanford University Press, StanfordGoogle Scholar
  5. 5.
    Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45(2):211–227PubMedGoogle Scholar
  6. 6.
    Mincer HH, Harris EF, Berryman HE (1993) The A.B.F.O. study of third molar development and its use as an estimator of chronological age. J Forensic Sci 38(2):379–390PubMedCrossRefGoogle Scholar
  7. 7.
    Dahlberg P, Mosdøl A, Ding KY, Bleka Ø, Rolseth V, Straumann GH et al (2017) Agreement between chronological age and bone age based on the Greulich & Pyle-atlas for age estimation: a systematic review. Folkehelseinstituttet, OsloGoogle Scholar
  8. 8.
    Rolseth V, Mosdøl A, Dahlberg PS, Ding KY, Bleka Ø, Skjerven-Martinsen M et al (2017) Demirjian’s development stages on wisdom teeth for estimation of chronological age: a systematic review. Folkehelseinstituttet, OsloGoogle Scholar
  9. 9.
    Boldsen JL, Milner GR, Konigsberg LW, Wood JW (2002) Transition analysis: a new method for estimating age from skeletons. Cambridge studies in biological and evolutionary anthropology :73–106Google Scholar
  10. 10.
    Bocquet-Appel J-P, Masset C (1982) Farewell to paleodemography. J Hum Evol 11(4):321–333CrossRefGoogle Scholar
  11. 11.
    Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F et al (2008) Criteria for age estimation in living individuals. Int J Legal Med 122(6):457–460PubMedCrossRefGoogle Scholar
  12. 12.
    Konigsberg LW (2015) Multivariate cumulative probit for age estimation using ordinal categorical data. Ann Hum Biol 42(4):368–378PubMedCrossRefGoogle Scholar
  13. 13.
    Konigsberg LW, Herrmann NP, Wescott DJ, Kimmerle EH (2008) Estimation and evidence in forensic anthropology: age-at-death. J Forensic Sci 53(3):541–557PubMedCrossRefGoogle Scholar
  14. 14.
    Bleka Ø, Wisløff T, Dahlberg PS et al (2018) Advancing estimation of chronological age by utilizing available evidence based on two radiographical methods. Int J Legal Med.
  15. 15.
    Saade A, Baron P, Noujeim Z, Azar D (2017) Dental and skeletal age estimations in Lebanese children: a retrospective cross-sectional study. J Int Soc Prev Community Dent 7(3):90–97PubMedPubMedCentralGoogle Scholar
  16. 16.
    Santos C, Ferreira M, Alves FC, Cunha E (2011) Comparative study of Greulich and Pyle Atlas and Maturos 4.0 program for age estimation in a Portuguese sample. Forensic Sci Int 212(1–3):276.e1–276.e7Google Scholar
  17. 17.
    van Rijn RR, Lequin MH, Robben SG, Hop WC, van Kuijk C (2001) Is the Greulich and Pyle atlas still valid for Dutch Caucasian children today? Pediatr Radiol 31(10):748–752PubMedCrossRefGoogle Scholar
  18. 18.
    Zafar AM, Nadeem N, Husen Y, Ahmad MN (2010) An appraisal of Greulich-Pyle Atlas for skeletal age assessment in Pakistan. JPMA J Pak Med Assoc 60(7):552–555PubMedGoogle Scholar
  19. 19.
    Tise M, Mazzarini L, Fabrizzi G, Ferrante L, Giorgetti R, Tagliabracci A (2011) Applicability of Greulich and Pyle method for age assessment in forensic practice on an Italian sample. Int J Legal Med 125(3):411–416PubMedCrossRefGoogle Scholar
  20. 20.
    Chaumoitre K, Saliba-Serre B, Adalian P, Signoli M, Leonetti G, Panuel M (2017) Forensic use of the Greulich and Pyle atlas: prediction intervals and relevance. Eur Radiol 27(3):1032–1043PubMedCrossRefGoogle Scholar
  21. 21.
    Bala M, Pathak A, Jain RL (2010) Assessment of skeletal age using MP3 and hand-wrist radiographs and its correlation with dental and chronological ages in children. J Indian Soc Pedod Prev Dent 28(2):95–99PubMedCrossRefGoogle Scholar
  22. 22.
    Buken B, Safak AA, Yazici B, Buken E, Mayda AS (2007) Is the assessment of bone age by the Greulich-Pyle method reliable at forensic age estimation for Turkish children? Forensic Sci Int 173(2):146–153PubMedCrossRefGoogle Scholar
  23. 23.
    Cantekin K, Celikoglu M, Miloglu O, Dane A, Erdem A (2012) Bone age assessment: the applicability of the Greulich-Pyle method in eastern Turkish children. J Forensic Sci 57(3):679–682PubMedCrossRefGoogle Scholar
  24. 24.
    Chiang KH, Chou ASB, Yen PS, Ling CM, Lin CC, Lee CC et al (2005) The reliability of using Greulich-Pyle method to determine children’s bone age in Taiwan. Tzu Chi Medical Journal 17(6):417–420 +53Google Scholar
  25. 25.
    Griffith JF, Cheng JCY, Wong E (2007) Are western skeletal age standards applicable to the Hong Kong Chinese population? A comparison of the Greulich and Pyle method and the tanner and whitehouse method. Hong Kong Medical Journal 13(3 Supplement 3):28–32Google Scholar
  26. 26.
    Koc A, Karaoglanoglu M, Erdogan M, Kosecik M, Cesur Y (2001) Assessment of bone ages: is the Greulich-Pyle method sufficient for Turkish boys? Pediatr Int 43(6):662–665PubMedCrossRefGoogle Scholar
  27. 27.
    Mohammed RB, Rao DS, Goud AS, Sailaja S, Thetay AA, Gopalakrishnan M (2015) Is Greulich and Pyle standards of skeletal maturation applicable for age estimation in South Indian Andhra children? J Pharm Bioallied Sci 7(3):218–225PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Nahid G, Abdorrahim A, Gharib SM, Anvar E (2010) Assessment of bone age in Kurdish children in Iran. Pak J Med Sci 26(1):36–39Google Scholar
  29. 29.
    Patel PS, Chaudhary AR, Dudhia BB, Bhatia PV, Soni NC, Jani YV (2015) Accuracy of two dental and one skeletal age estimation methods in 6-16 year old Gujarati children. J Forensic Dent Sci 7(1):18–27PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Alsaffar H, Elshehawi W, Roberts G, Lucas V, McDonald F, Camilleri S (2017) Dental age estimation of children and adolescents: validation of the Maltese Reference Data Set. J Forensic Legal Med 45:29–31CrossRefGoogle Scholar
  31. 31.
    Elshehawi W, Alsaffar H, Roberts G, Lucas V, McDonald F, Camilleri S (2016) Dental age assessment of Maltese children and adolescents. Development of a reference dataset and comparison with a United Kingdom Caucasian reference dataset. J Forensic Legal Med 39:27–33CrossRefGoogle Scholar
  32. 32.
    Jayaraman J, Wong HM, King NM, Roberts GJ (2016) Development of a Reference Data Set (RDS) for dental age estimation (DAE) and testing of this with a separate Validation Set (VS) in a southern Chinese population. J Forensic Legal Med 43:26–33CrossRefGoogle Scholar
  33. 33.
    Knell B, Ruhstaller P, Prieels F, Schmeling A (2009) Dental age diagnostics by means of radiographical evaluation of the growth stages of lower wisdom teeth. Int J Legal Med 123(6):465–469PubMedCrossRefGoogle Scholar
  34. 34.
    Cavrić J, Vodanović M, Marušić A, Galić I (2016) Time of mineralization of permanent teeth in children and adolescents in Gaborone, Botswana. Ann Anat - Anatomischer Anzeiger 203:24–32PubMedCrossRefGoogle Scholar
  35. 35.
    Lee SH, Lee JY, Park HK, Kim YK (2009) Development of third molars in Korean juveniles and adolescents. Forensic Sci Int 188(1):107–111PubMedCrossRefGoogle Scholar
  36. 36.
    Johan NA, Khamis MF, Abdul Jamal NS, Ahmad B, Mahanani ES (2012) The variability of lower third molar development in Northeast Malaysian population with application to age estimation. J Forensic Odontostomatol 30(1):45–54PubMedPubMedCentralGoogle Scholar
  37. 37.
    Duangto P, Iamaroon A, Prasitwattanaseree S, Mahakkanukrauh P, Janhom A (2017) New models for age estimation and assessment of their accuracy using developing mandibular third molar teeth in a Thai population. Int J Legal Med 131(2):559–568PubMedCrossRefGoogle Scholar
  38. 38.
    Li G, Ren J, Zhao S, Liu Y, Li N, Wu W et al (2012) Dental age estimation from the developmental stage of the third molars in western Chinese population. Forensic Sci Int 219(1):158–164PubMedCrossRefGoogle Scholar
  39. 39.
    Bleka Ø, Dahlberg PS, Rolseth V, Bachs L BioAlder Manual Version 1.1 Available from:
  40. 40.
    Yee TW (2010) The VGAM Package for categorical data analysis. J Stat Softw 1(10 (2010))Google Scholar
  41. 41.
    Yee TW VGAM: vector generalized linear and additive models 2017. Available from:
  42. 42.
    Gelbrich B, Frerking C, Weiss S, Schwerdt S, Stellzig-Eisenhauer A, Tausche E et al (2015) Combining wrist age and third molars in forensic age estimation: how to calculate the joint age estimate and its error rate in age diagnostics. Ann Hum Biol 42(4):389–396PubMedCrossRefGoogle Scholar
  43. 43.
    Varkkola O, Ranta H, Metsaniitty M, Sajantila A (2011) Age assessment by the Greulich and Pyle method compared to other skeletal X-ray and dental methods in data from Finnish child victims of the southeast Asian tsunami. Forensic Sci Med Pathol 7(4):311–316PubMedCrossRefGoogle Scholar
  44. 44.
    Kanbur NO, Kanlı A, Derman O, Eifan A, Ataç A (2006) The relationships between dental age, chronological age and bone age in Turkish adolescents with constitutional delay of growth. J Pediatr Endocrinol Metab 19(8):979PubMedCrossRefGoogle Scholar
  45. 45.
    Olze A, Pynn BR, Kraul V, Schulz R, Heinecke A, Pfeiffer H et al (2010) Studies on the chronology of third molar mineralization in First Nations people of Canada. Int J Legal Med 124(5):433–437PubMedCrossRefGoogle Scholar
  46. 46.
    Roberts GJ, McDonald F, Andiappan M, Lucas VS (2015) Dental Age Estimation (DAE): data management for tooth development stages including the third molar. Appropriate censoring of Stage H, the final stage of tooth development. J Forensic Legal Med 36:177–184CrossRefGoogle Scholar
  47. 47.
    Jung YH, Cho BH (2014) Radiographic evaluation of third molar development in 6- to 24-year-olds. Imaging Sci Dent 44(3):185–191PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Schmeling A, Dettmeyer R, Rudolf E, Vieth V, Geserick G (2016) Forensic age estimation: methods, certainty, and the law. Dtsch Arztebl Int 113(4):44–50PubMedPubMedCentralGoogle Scholar
  49. 49.
    UN High Commissioner for Refugees (UNHCR) Guidelines on International Protection No. 8: Child Asylum Claims under Articles 1(A)2 and 1(F) of the 1951 Convention and/or 1967 Protocol relating to the Status of Refugees [updated 22 December 2009. HCR/GIP/09/8]. Available from:
  50. 50.
    Mansourvar M, Ismail MA, Raj RG, Kareem SA, Aik S, Gunalan R et al (2014) The applicability of Greulich and Pyle atlas to assess skeletal age for four ethnic groups. J Forensic Legal Med 22:26–29CrossRefGoogle Scholar
  51. 51.
    Olze A, Schmeling A, Taniguchi M, Maeda H, van Niekerk P, Wernecke KD et al (2004) Forensic age estimation in living subjects: the ethnic factor in wisdom tooth mineralization. Int J Legal Med 118(3):170–173PubMedCrossRefGoogle Scholar
  52. 52.
    Prieto JL, Barberia E, Ortega R, Magana C (2005) Evaluation of chronological age based on third molar development in the Spanish population. Int J Legal Med 119(6):349–354PubMedCrossRefGoogle Scholar
  53. 53.
    Solari AC, Abramovitch K (2002) The accuracy and precision of third molar development as an indicator of chronological age in Hispanics. J Forensic Sci 47(3):531–535PubMedGoogle Scholar
  54. 54.
    Liversidge HM, Peariasamy K, Folayan MO, Adeniyi AO, Ngom PI, Mikami Y et al (2017) A radiographic study of the mandibular third molar root development in different ethnic groups. J Forensic Odontostomatol 2(35):97–108PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forensic SciencesOslo University HospitalOsloNorway
  2. 2.Department of Orthodontics and Dento-Facial OrthopedicsLebanese UniversityBeirutLebanon
  3. 3.Faculty of Dental MedicineSaint-Joseph UniversityBeirutLebanon

Personalised recommendations