Advertisement

International Journal of Legal Medicine

, Volume 133, Issue 2, pp 661–668 | Cite as

Intra vitam trauma pattern: changing the paradigm of forensic anthropology?

  • Sarah Scheirs
  • Britt Hevink
  • Marisa Ortega-Sánchez
  • Xavier Jordana
  • Hannah McGlynn
  • Alfonso Rodriguez-Baeza
  • Assumpció Malgosa
  • Ignasi GaltésEmail author
Original Article

Abstract

This study aims to improve a previous study that reported new traits to characterize a perimortem fracture pattern in human long bones. This second study aims to acquire further knowledge about these perimortem traits, specifically by improving the experimental setting—by using a Blunt Force Trauma Simulator—and increasing the sample size with a total of 43 autopsy specimens and 57 reproduced fractures. Additionally, we investigated whether these traits could be related to muscular contractions by adding axial compression in the experimentally fractured specimens. If intra vitam traits can be found, it would consequentially be more valuable for forensic anthropologists to shorten the perimortem period. We demonstrate that all traits are perimortem traits. Furthermore, based on our results, we see the tendency that the combination of traits—instead of the presence of each trait individually—may make it possible to distinguish intra vitam from perimortem fractures. This study confirms these distinct characteristics that can be valuable to utilize in the distinction between peri- and postmortem fractures.

Keywords

Forensic anthropology Bone trauma Time of injury Perimortem trauma Traits 

Notes

Acknowledgements

Special thanks go to the technicians and personnel staff of the Institute of Legal Medicine and Forensic Sciences of Catalonia (IMLCFC) and to the staff of the medical department of the Autonomous University of Barcelona (UAB). They thank Vincent Scheirs for the design and construction of the Blunt Force Trauma Simulator.

Funding information

Financial aid was from the research group of Biological Anthropology (GREAB) from project SGR14-1420.

Compliance with ethical standards

This study was approved by the Ethics Commission of Human and Animal Experimental Work (CEEAH) of the UAB, in compliance with the ethical regulations.

References

  1. 1.
    Sauer NJ (1998) The timing of injuries and manner of death: distinguishing among antemortem, perimortem, and postmortem trauma. In: Reichs KJ (ed) Forensic osteology: advances in the identification of human remains. Charles C. Thomas, Springfield, pp 321–332Google Scholar
  2. 2.
    Reichs KJ (1998) Forensic osteology: advances in the identification of human remains, 2nd edn. Charles C Thomas, SpringfieldGoogle Scholar
  3. 3.
    Christensen AM, Passalacqua NV, Bartelink EJ (2014) Forensic anthropology: current methods and practice. Academic, OxfordGoogle Scholar
  4. 4.
    Symes SA, L’Abbé EN, Stull KE et al (2014) Chapter 13: Taphonomy and the timing of bone fractures in trauma analysis. In: Pokines JT, Symes SA (eds) Manual of forensic taphonomy. CRC Press, Florida, pp 341–365Google Scholar
  5. 5.
    Nawrocki S (2009) Forensic Taphonomy. In: Blau S, Ubelaker DH (eds) Handbook of forensic anthropology and archaeology. Left Coast Press, Walnut Creek, pp 284–295Google Scholar
  6. 6.
    Cappella A, Amadasi A, Castoldi E, Mazzarelli D, Gaudio D, Cattaneo C (2014) The difficult task of assessing perimortem and postmortem fractures on the skeleton: a blind text on 210 fractures of known origin. J Forensic Sci 59:1598–1601CrossRefGoogle Scholar
  7. 7.
    Scheirs S, Malgosa A, Sanchez-Molina D, Ortega-Sánchez M, Velázquez-Ameijide J, Arregui-Dalmases C, Medallo-Muñiz J, Galtés I (2016) New insights in the analysis of blunt force trauma in human bones. Preliminary results. Int J Legal Med 131:867–875.  https://doi.org/10.1007/s00414-016-1514-1 CrossRefGoogle Scholar
  8. 8.
    Reber SL, Simmons T (2015) Interpreting injury mechanisms of blunt force trauma from butterfly fracture formation. J Forensic Sci 60:1401–1411.  https://doi.org/10.1111/1556-4029.12797 CrossRefGoogle Scholar
  9. 9.
    Saha S, Hayes WC (1976) Tensile impact properties of human compact bone. J Biomech 9:243–251.  https://doi.org/10.1016/0021-9290(76)90010-5 CrossRefGoogle Scholar
  10. 10.
    Reich T, Gefen A (2006) Effect of trabecular bone loss on cortical strain rate during impact in an in vitro model of avian femur. Biomed Eng Online 5(45):45.  https://doi.org/10.1186/1475-925X-5-45 CrossRefGoogle Scholar
  11. 11.
    Galloway A, Zephro L, Wedel VL (2014) Diagnostic criteria for the determination of timing and fracture mechanism. In: Wedel VL, Galloway A (eds) Broken bones. Charles C Thomas, Springfield, p 479Google Scholar
  12. 12.
    Kieser J, Taylor M, Carr D (2013) Forensic biomechanics. Wiley-Blackwell, Hoboken.  https://doi.org/10.4172/2090-2697.1000e102 Google Scholar
  13. 13.
    Wescott DJ (2013) Biomechanics of bone trauma. In: Siegel J, Saukko P (eds) Encyclopedia of forensic sciences. Academic, New York, pp 83–88CrossRefGoogle Scholar
  14. 14.
    Wieberg DAM, Wescott DJ (2008) Estimating the timing of long bone fractures: correlation between the postmortem interval, bone moisture content, and blunt force trauma fracture characteristics. J Forensic Sci 53:1028–1034.  https://doi.org/10.1111/j.1556-4029.2008.00801.x Google Scholar
  15. 15.
    Porta DJ (2005) Chapter 9: Biomechanics of impact injury. In: Rich J, Dean DE, Powers RH (eds) Forensic medicine of the lower extremity: human identification and trauma analysis of the thigh, leg, and foot. Humana Press, New York, pp 279–310CrossRefGoogle Scholar
  16. 16.
    Cohen H, Kugel C, May H, Medlej B, Stein D, Slon V, Brosh T, Hershkovitz I (2017a) The influence of impact direction and axial loading on the bone fracture pattern. Forensic Sci Int 277:197–206.  https://doi.org/10.1016/j.forsciint.2017.05.015 CrossRefGoogle Scholar
  17. 17.
    Cohen H, Kugel C, May H, Medlej B, Stein D, Slon V, Brosh T, Hershkovitz I (2017b) The effect of impact tool geometry and soft material covering on long bone fracture patterns in children. Int J Legal Med 131:1011–1021.  https://doi.org/10.1007/s00414-017-1532-7 CrossRefGoogle Scholar
  18. 18.
    Mazess RB (1982) On aging bone loss. Clin Orthop Relat Res:239–252Google Scholar
  19. 19.
    McCalden RW, McGeough JA, Barker MB, Court-Brown CM (1993) Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am 75:1193–1205CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sarah Scheirs
    • 1
    • 2
  • Britt Hevink
    • 1
    • 3
  • Marisa Ortega-Sánchez
    • 1
    • 4
  • Xavier Jordana
    • 2
  • Hannah McGlynn
    • 5
  • Alfonso Rodriguez-Baeza
    • 4
  • Assumpció Malgosa
    • 2
  • Ignasi Galtés
    • 1
    • 6
    • 2
    Email author
  1. 1.Forensic Anthropology Unit, Institut de Medicina Legal i Cienciès Forense (IMLCFC)Ciutat de la Justícia, Gran Via de les Corts CatalanesBarcelonaSpain
  2. 2.Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and EcologyUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Faculty of Natural Sciences, Mathematics and InformaticsUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Anatomy and Embriology Unit, Morphological Sciences, Faculty of MedicineAutonomous Universitat Autònoma de BarcelonaBarcelonaSpain
  5. 5.Community Outreach and EngagementThe Achavanich Beaker Burial ProjectEdinburghScotland
  6. 6.Forensic Anthropology Unit, Catalonian Institute of Legal Medicine and Forensic Science (IMLCFC)Ciutat de la Justícia. Gran Via de les Corts CatalanesBarcelonaSpain

Personalised recommendations