Advertisement

International Journal of Legal Medicine

, Volume 133, Issue 3, pp 889–898 | Cite as

A serum metabolomics signature of hypothermia fatalities involving arginase activity, tryptophan content, and phosphatidylcholine saturation

  • Guillaume RousseauEmail author
  • Juan Manuel Chao de la Barca
  • Clotilde Rougé-Maillart
  • Grzegorz Teresiński
  • Nathalie Jousset
  • Xavier Dieu
  • Floris Chabrun
  • Delphine Prunier-Mirabeau
  • Gilles Simard
  • Pascal Reynier
  • Cristian Palmiere
Original Article

Abstract

Introduction

Hypothermia is a potentially lethal condition whose postmortem diagnosis is often complex to perform due to the absence of pathognomonic lesions and biomarkers. Our first study of human serum and urinary metabolome in hypothermia fatalities sought novel biomarkers with better diagnostic performances than those already existing.

Material and Method

Thirty-two cases of hypothermia deaths and 16 cases excluding known antemortem exposure to cold or postmortem elements suggesting hypothermia were selected. A targeted metabolomic study allowing the detection and quantitation of 188 metabolites was performed on collected serum and urine using direct flow injection (FIA) and liquid chromatography (LC) separation, both coupled to tandem mass spectrometry (MS/MS). Amino acid quantification was also carried on using an in-house LC-MS/MS method in order to replicate the results obtained with the metabolomic study.

Results

A discriminant metabolic signature allowing a clear separation between hypothermia and control groups was obtained in the serum. This signature was characterized by increased arginase activity and fatty acid unsaturation along with decreased levels of tryptophan in hypothermia fatalities compared to controls. By contrast, no discriminant metabolic signature separating hypothermia from control fatalities was found in urines.

Discussion

The serum metabolic signature of hypothermia fatalities herein observed pointed toward metabolic adaptations that likely aimed at heat production enhancement, endothelial function, and cell membrane fluidity preservation. Novel biomarkers potentially useful in a hypothermia diagnosis were also identified.

Keywords

Forensic science Hypothermia Metabolomics Serum Urine Biomarkers 

Notes

Acknowledgements

We would like to thank Lydie Tessier and Cédric Gadras for technical support and Donnalee Perez for language editing.

Compliance with ethical standards

We confirm that all cases selected for this work underwent medicolegal autopsies directed by the public prosecutor. Biochemical investigations were performed as part of investigations.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

414_2018_1937_MOESM1_ESM.pdf (200 kb)
Online Resource 1 (PDF 199 kb)
414_2018_1937_MOESM2_ESM.xlsx (84 kb)
Online Resource 2 Results of the serum metabolomics study. (XLSX 84.1 kb)
414_2018_1937_MOESM3_ESM.xlsx (62 kb)
Online Resource 3 Results of the urine metabolomics study (XLSX 62.2 kb)

References

  1. 1.
    Palmiere C, Teresiński G, Hejna P (2014) Postmortem diagnosis of hypothermia. Int J Legal Med 128:607–614.  https://doi.org/10.1007/s00414-014-0977-1 CrossRefGoogle Scholar
  2. 2.
    Rousseau G, Reynier P, Jousset N, Rougé-Maillart C, Palmiere C (2018) Updated review of postmortem biochemical exploration of hypothermia with a presentation of standard strategy of sampling and analyses. Clin Chem Lab Med.  https://doi.org/10.1515/cclm-2018-0153
  3. 3.
    Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617.  https://doi.org/10.1093/nar/gkx1089 CrossRefGoogle Scholar
  4. 4.
    Chao De La Barca JM, Mirebeau-Prunier D, Moal V et al (2015) Metabolome and mass spectrometry: new biomedical analysis perspectives. Ann Biol Clin 73:126–130.  https://doi.org/10.1684/abc.2014.1020 Google Scholar
  5. 5.
    Royer A-L, Escurrou A, Guitton Y et al (2017) L’approche métabolomique par spectrométrie de masse : évidences, incertitudes et points critiques. Spectra Anal 314:47–54Google Scholar
  6. 6.
    Maeda H, Ishikawa T, Michiue T (2014) Forensic molecular pathology: its impacts on routine work, education and training. Legal Med 16:61–69.  https://doi.org/10.1016/j.legalmed.2014.01.002 CrossRefGoogle Scholar
  7. 7.
    Eriksson L, Johansson E, Kettaneh-Wold N, et al (2006) Part I: basic principles and applications PLS. In: Multi- and magavariate data analysis, 2nd ed. Umetrics, UmeåGoogle Scholar
  8. 8.
    Sin YY, Baron G, Schulze A, Funk CD (2015) Arginase-1 deficiency. J Mol Med 93:1287–1296.  https://doi.org/10.1007/s00109-015-1354-3 CrossRefGoogle Scholar
  9. 9.
    Schlune A, Vom Dahl S, Häussinger D et al (2015) Hyperargininemia due to arginase I deficiency: the original patients and their natural history, and a review of the literature. Amino Acids 47:1751–1762.  https://doi.org/10.1007/s00726-015-2032-z CrossRefGoogle Scholar
  10. 10.
    Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB (2018) Arginase: a multifaceted enzyme important in health and disease. Physiol Rev 98:641–665.  https://doi.org/10.1152/physrev.00037.2016 CrossRefGoogle Scholar
  11. 11.
    Jay A, Seeterlin M, Stanley E, Grier R (2013) Case report of argininemia: the utility of the arginine/ornithine ratio for newborn screening (NBS). JIMD Rep 9:121–124.  https://doi.org/10.1007/8904_2012_190 CrossRefGoogle Scholar
  12. 12.
    Abdullaev RA, Emirbekov EZ (1991) Activity of liver and brain arginase during hypothermia. Ukr Biokhim Zh 63:108–111Google Scholar
  13. 13.
    Krichevskaia AA, Shugaleĭ VS, Anaian AA (1985) Effect of arginine on the arginase activity and urea content of the brain and liver of rats acclimating to cold. Nauchnye Dokl Vyss Shkoly Biol Nauki 9:33–36Google Scholar
  14. 14.
    Steiner AA, Carnio EC, Antunes-Rodrigues J, Branco LG (1998) Role of nitric oxide in systemic vasopressin-induced hypothermia. Am J Phys 275:R937–R941Google Scholar
  15. 15.
    Saia RS, Carnio EC (2006) Thermoregulatory role of inducible nitric oxide synthase in lipopolysaccharide-induced hypothermia. Life Sci 79:1473–1478.  https://doi.org/10.1016/j.lfs.2006.04.010 CrossRefGoogle Scholar
  16. 16.
    Otasevic V, Korac A, Buzadzic B et al (2011) Nitric oxide and thermogenesis--challenge in molecular cell physiology. Front Biosci 3:1180–1195CrossRefGoogle Scholar
  17. 17.
    Badawy AA-B (2017) Tryptophan availability for kynurenine pathway metabolism across the life span: control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology 112:248–263.  https://doi.org/10.1016/j.neuropharm.2015.11.015 CrossRefGoogle Scholar
  18. 18.
    Voronova IP, Kulikov AV (1991) Role of phosphorylation in the activation of tryptophan hydroxylase of the brain during hypothermia. Biull Eksp Biol Med 112:56–57CrossRefGoogle Scholar
  19. 19.
    Schefold JC, Fritschi N, Fusch G, Bahonjic A, Doehner W, von Haehling S, Pschowski R, Storm C, Schroeder T (2016) Influence of core body temperature on tryptophan metabolism, kynurenines, and estimated IDO activity in critically ill patients receiving target temperature management following cardiac arrest. Resuscitation 107:107–114.  https://doi.org/10.1016/j.resuscitation.2016.07.239 CrossRefGoogle Scholar
  20. 20.
    Okamoto H, Ishikawa A, Nishimuta M et al (2002) Effects of stress on the urinary excretory pattern of niacin catabolites, the most reliable index of niacin status, in humans. J Nutr Sci Vitaminol 48:417–419CrossRefGoogle Scholar
  21. 21.
    Cossins AR, Murray PA, Gracey AY, Logue J, Polley S, Caddick M, Brooks S, Postle T, Maclean N (2002) The role of desaturases in cold-induced lipid restructuring. Biochem Soc Trans 30:1082–1086.  https://doi.org/10.1042/bst0301082
  22. 22.
    Slotte JP (2013) Biological functions of sphingomyelins. Prog Lipid Res 52:424–437.  https://doi.org/10.1016/j.plipres.2013.05.001 CrossRefGoogle Scholar
  23. 23.
    Hama H (2010) Fatty acid 2-hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta 1801:405–414.  https://doi.org/10.1016/j.bbalip.2009.12.004 CrossRefGoogle Scholar
  24. 24.
    Boggs JM, Koshy KM, Rangaraj G (1988) Influence of structural modifications on the phase behavior of semi-synthetic cerebroside sulfate. Biochim Biophys Acta 938:361–372CrossRefGoogle Scholar
  25. 25.
    Van Hoolen L (2011) Détermination du profil des acylcarnitines plasmatiques par spectrométrie de masse en tandem: Développement de la technique et intérêt pour le diagnostic de maladies héréditaires du métabolisme. Dissertation, University of GrenobleGoogle Scholar
  26. 26.
    Broman LM, Carlström M, Källskog Ö, Wolgast M (2017) Effect of nitric oxide on renal autoregulation during hypothermia in the rat. Pflugers Arch 469:669–680.  https://doi.org/10.1007/s00424-017-1967-1 CrossRefGoogle Scholar
  27. 27.
    Zhu B-L, Ishikawa T, Michiue T, Tanaka S, Zhao D, Li DR, Quan L, Oritani S, Maeda H (2007) Differences in postmortem urea nitrogen, creatinine and uric acid levels between blood and pericardial fluid in acute death. Leg Med 9:115–122.  https://doi.org/10.1016/j.legalmed.2006.10.002 CrossRefGoogle Scholar
  28. 28.
    Palmiere C, Bardy D, Letovanec I, Mangin P, Augsburger M, Ventura F, Iglesias K, Werner D (2013) Biochemical markers of fatal hypothermia. Forensic Sci Int 226:54–61.  https://doi.org/10.1016/j.forsciint.2012.12.007 CrossRefGoogle Scholar
  29. 29.
    Stadtman ER, Van Remmen H, Richardson A et al (2005) Methionine oxidation and aging. Biochim Biophys Acta 1703:135–140.  https://doi.org/10.1016/j.bbapap.2004.08.010 CrossRefGoogle Scholar
  30. 30.
    Hagen J, te Brinke H, Wanders RJA, Knegt AC, Oussoren E, Hoogeboom AJM, Ruijter GJG, Becker D, Schwab KO, Franke I, Duran M, Waterham HR, Sass JO, Houten SM (2015) Genetic basis of alpha-aminoadipic and alpha-ketoadipic aciduria. J Inherit Metab Dis 38:873–879.  https://doi.org/10.1007/s10545-015-9841-9 CrossRefGoogle Scholar
  31. 31.
    Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, Ghorbani A, O’Sullivan J, Cheng S, Rhee EP, Sinha S, McCabe E, Fox CS, O’Donnell CJ, Ho JE, Florez JC, Magnusson M, Pierce KA, Souza AL, Yu Y, Carter C, Light PE, Melander O, Clish CB, Gerszten RE (2013) 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest 123:4309–4317.  https://doi.org/10.1172/JCI64801 CrossRefGoogle Scholar
  32. 32.
    Palmiere C, Teresiński G, Hejna P, Mangin P, Grouzmann E (2014) Diagnostic performance of urinary metanephrines for the postmortem diagnosis of hypothermia. Forensic Sci Med Pathol 10:518–525.  https://doi.org/10.1007/s12024-014-9585-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guillaume Rousseau
    • 1
    • 2
    • 3
    Email author
  • Juan Manuel Chao de la Barca
    • 2
    • 3
  • Clotilde Rougé-Maillart
    • 4
  • Grzegorz Teresiński
    • 5
  • Nathalie Jousset
    • 1
  • Xavier Dieu
    • 2
    • 3
  • Floris Chabrun
    • 2
    • 3
  • Delphine Prunier-Mirabeau
    • 2
    • 3
  • Gilles Simard
    • 2
  • Pascal Reynier
    • 2
    • 3
  • Cristian Palmiere
    • 6
  1. 1.Service de médecine légale et pénitentiaireCentre Hospitalier Universitaire d’AngersAngers Cedex 09France
  2. 2.Département de biochimie et génétiqueCentre Hospitalier Universitaire d’AngersAngers Cedex 09France
  3. 3.Unité Mixte de Recherche MITOVASC, Equipe Mitolab, CNRS 6015, INSERM 1083Université d’AngersAngers Cedex 01France
  4. 4.GEROM-LHEA, IRIS-IBS Institut de Biologie en SantéCentre Hospitalier Universitaire d’AngersAngers Cedex 09France
  5. 5.Department of Forensic MedicineMedical University of LublinLublinPoland
  6. 6.Centre Universitaire Romand de Médecine LégaleHôpital Universitaire de LausanneLausanne 25Switzerland

Personalised recommendations