Advertisement

International Journal of Legal Medicine

, Volume 133, Issue 2, pp 365–372 | Cite as

Multiplex analysis of genetic polymorphisms within UGT1A9, a gene involved in phase II of Δ9-THC metabolism

  • Julia Sophie Schneider
  • Angela Gasse
  • Marianne Schürenkamp
  • Ursula Sibbing
  • Sabrina Banken
  • Heidi Pfeiffer
  • Jennifer SchürenkampEmail author
  • Marielle Vennemann
Original Article

Abstract

We present a novel multiplex assay for the simultaneous detection of 12 polymorphisms within the UGT1A9 sequence, which codes for enzymes involved in phase II biotransformation. The assay combines a multiplexed amplification step with single-base extension sequencing. The method described here is fast, cost-effective, and easy-to-use, combining the relevant features of screening methods for research and diagnostics in pharmacogenetics. To validate the assay, we tested reproducibility and sensitivity and analysed allele frequencies of 110 Caucasian individuals. Furthermore, we describe combining genetic information of individuals consuming Cannabis sativa products with respective plasma concentrations of a metabolite.

Keywords

UDP-glucuronosyltransferase 1A9 Biological assay Cannabis Delta(9)-THC Personalised medicine 

Supplementary material

414_2018_1919_MOESM1_ESM.odt (11 kb)
Supplementary Table1 (ODT 11 kb)
414_2018_1919_MOESM2_ESM.odt (10 kb)
Supplementary Table 2 (ODT 9 kb)
414_2018_1919_MOESM3_ESM.odt (13 kb)
Supplementary Table 3 (ODT 12 kb)

References

  1. 1.
    Stout SM, Cimino NM (2014) Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev 46(1):86–95CrossRefGoogle Scholar
  2. 2.
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1946–1949CrossRefGoogle Scholar
  3. 3.
    Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I (2007) Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci 80(15):1415–1419CrossRefGoogle Scholar
  4. 4.
    Sachse-Seeboth C, Pfeil J, Sehrt D, Meineke I, Tzvetkov M, Bruns E, Poser W, Vormfelde SV, Brockmöller J (2009) Interindividual variation in the pharmacokinetics of Delta9-tetrahydrocannabinol as related to genetic polymorphisms in CYP2C9. Clin Pharmacol Ther 85(3):273–276CrossRefGoogle Scholar
  5. 5.
    Mazur A, Lichti CF, Prather PL, Zielinska AK, Bratton SM, Gallus-Zawada A et al (2009) Characterization of human hepatic and extrahepatic UDP-glucuronosyltransferase enzymes involved in the metabolism of classic cannabinoids. Drug Metab Dispos 37(7):1496–1504CrossRefGoogle Scholar
  6. 6.
    Burchell B, Coughtrie MWH (1989) UDP-glucuronosyltransferases. Pharmacol Ther 43(2):261–289CrossRefGoogle Scholar
  7. 7.
    Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T et al (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15(10):677–685CrossRefGoogle Scholar
  8. 8.
    Gong QH, Cho JW, Huang T, Potter C, Gholami N, Basu NK, Kubota S, Carvalho S, Pennington MW, Owens IS, Popescu NC (2001) Thirteen UDP glucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 11(4):357–368CrossRefGoogle Scholar
  9. 9.
    Ritters JK, Crawford JM, Owens IS (1991) Cloning of two human liver bilirubin UDP-glucuronosyl- transferase cDNAs with expression in COS-1Cells. J Biol Chem 266(2):1043–1047Google Scholar
  10. 10.
    Wooster R, Sutherland L, Ebner T, Clarke D, Da Cruz e Silva O, Burchell B (1991) Cloning and stable expression of a new member of the human liver phenol/bilirubin: UDP-glucuronosyltransferase cDNA family. Biochem J 278:465–469CrossRefGoogle Scholar
  11. 11.
    Cui C, Shu C, Cao D, Yang Y, Liu J, Shi S, Shao Z, Wang N, Yang T, Liang H, Zou S, Hu S (2016) UGT1A1*6, UGT1A7*3 and UGT1A9*1b polymorphisms are predictive markers for severe toxicity in patients with metastatic gastrointestinal cancer treated with irinotecan-based regimens. Oncol Lett 12:4231–4237CrossRefGoogle Scholar
  12. 12.
    Thijs JL, Van Der Geest BAM, Van Der Schaft J, Van Den Broek MP, Van Seggelen WO, Bruijnzeel-Koomen CAF et al (2017) Predicting therapy response to mycophenolic acid using UGT1A9 genotyping: towards personalized medicine in atopic dermatitis. J Dermatol Treat 28(3):242–245CrossRefGoogle Scholar
  13. 13.
    Villeneuve L, Girard H, Fortier L-C, Gagné J-F, Guillemette C (2003) Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther 307(1):117–128CrossRefGoogle Scholar
  14. 14.
    Gagné J, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C (2002) Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 62(3):608–617CrossRefGoogle Scholar
  15. 15.
    Girard H, Court MH, Bernard O, Fortier L-C, Villeneuve L, Hao Q, Greenblatt DJ, von Moltke LL, Perussed L, Guillemette C (2004) Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 14(8):501–515CrossRefGoogle Scholar
  16. 16.
    Wang Y-B, Zhang R-Z, Huang S-H, Wang S-B, Xie J-Q (2017) Relationship between UGT1A9 gene polymorphisms, efficacy, and safety of propofol in induced abortions amongst Chinese population: a population-based study. Biosci Rep 37(5):BSR20170722CrossRefGoogle Scholar
  17. 17.
    Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10(4):506–513Google Scholar
  18. 18.
    Sánchez-Fructuoso AI, Maestro ML, Calvo N, Viudarreta M, Pérez-Flores I, Veganzone S, de la Orden V, Ortega D, Arroyo M, Barrientos A (2009) The prevalence of uridine diphosphate-gucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients. Transplant Proc 41(6):2313–2316CrossRefGoogle Scholar
  19. 19.
    van Schaik RHN, van Agteren M, de Fijter JW, Hartmann A, Schmidt J, Budde K et al (2009) UGT1A9 -275T>A/-2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther 86(3):319–327CrossRefGoogle Scholar
  20. 20.
    Girard H, Villeneuve L, Court MH, Fortier LC, Caron P, Hao Q, von Moltke LL, Greenblatt DJ, Guillemette C (2006) The novel UGT1A9 intronic I399 polymorphism appears as a predictor of 7-ethyl-10-hydroxycamptothecin glucuronidation levels in the liver. Drug Metab Dispos 34(7):1220–1228CrossRefGoogle Scholar
  21. 21.
    Yamanaka H, Nakajima M, Katoh M, Hara Y (2004) Udp-glucuronosyltransferase T. A novel polymorphism in the promoter region of human UGT1A9 gene ( UGT1A9 * 22 ) and its effects on the transcriptional activity. Pharmacogenetics 14:329–332CrossRefGoogle Scholar
  22. 22.
    Street CM, Zhu Z, Finel M, Court MH (2017) Bisphenol-A glucuronidation in human liver and breast: identification of UDP-glucuronosyltransferases (UGTs) and influence of genetic polymorphisms. Xenobiotica 47(1):1–10CrossRefGoogle Scholar
  23. 23.
    Ramírez J, Liu W, Mirkov S, A a D, Chen P, Das S et al (2007) Lack of association between common polymorphisms in UGT1A9 and gene expression and activity. Drug Metab Dispos 35(12):2149–2153CrossRefGoogle Scholar
  24. 24.
    Wang H, Yuan L, Zeng S (2011) Characterizing the effect of UDP-glucuronosyltransferase (UGT) 2B7 and UGT1A9 genetic polymorphisms on enantioselective glucuronidation of flurbiprofen. Biochem Pharmacol 82(11):1757–1763CrossRefGoogle Scholar
  25. 25.
    Untergasser A, Cutcutache I, Koressar T, Ye J, Faircloth BC, Remm M et al (2012) Primer3- new capabilities and interfaces. Nucleic Acids Res 40(15):e115CrossRefGoogle Scholar
  26. 26.
    Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291CrossRefGoogle Scholar
  27. 27.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57(1):289–300Google Scholar
  28. 28.
    Agrawal A, Lynskey MT (2006) The genetic epidemiology of cannabis use, abuse and dependence. Addiction 101(6):801–812CrossRefGoogle Scholar
  29. 29.
    Verweij KJ, Zietsch BP, Liu JZ, Medland SE, Lynskey MT, Madden PA, Agrawal A, Montgomery GW, Heath AC, Martin NG (2012) No association of candidate genes with cannabis use in a large sample of Australian twin families. Addict Biol 17(3):687–690CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Julia Sophie Schneider
    • 1
  • Angela Gasse
    • 1
  • Marianne Schürenkamp
    • 1
  • Ursula Sibbing
    • 1
  • Sabrina Banken
    • 1
  • Heidi Pfeiffer
    • 1
  • Jennifer Schürenkamp
    • 1
    Email author
  • Marielle Vennemann
    • 1
  1. 1.Institute of Legal MedicineUniversity of MünsterMünsterGermany

Personalised recommendations