Advertisement

International Journal of Legal Medicine

, Volume 132, Issue 6, pp 1769–1777 | Cite as

Age estimation combining radiographic information of two dental and four skeletal predictors in children and subadults

  • Akiko Kumagai
  • Guy Willems
  • Ademir Franco
  • Patrick Thevissen
Original Article

Abstract

Improved age estimates may result from combining different age predictors. This study aimed to validate age estimation performances combining the radiographic development of teeth, cervical vertebrae, hand and wrist bones, skull, and mandible. The sampled consisted of 256 individuals aged between 4 and 20 years. Bayes’ rule with a multivariate continuation ratio model was applied for the distribution of the dental scores. The additional age information of the skeletal variables was assessed extending the dental model separately and combining the variables. The performances of all models were quantified and compared using mean error (ME), mean absolute error (MAE), and root mean squared error (RMSE). The best performance resulted combining all variables (ME − 0.04 for F and M; MAE 0.91 for F and 0.95 for M; RMSE 1.14 for F and 1.19 for M). To improve performances and minimize radiation doses, the combination of teeth and hand and wrist bones information is recommended.

Keywords

Forensic Odontology Age estimation Skeletal and Dental Development 

Notes

Compliance with ethical standards

Ethical approval was provided by the Ethical Committee of the School of Dentistry at Iwate Medical University under reference no. 01237 according to the Declaration of Helsinki regarding human experimentation.

References

  1. 1.
    Gustafson G (1995) Age determinations on teeth. J Am Dent Assoc 41:45–54CrossRefGoogle Scholar
  2. 2.
    Moorrees CFA, Fanning EA, Hunt EE Jr (1963) Age variation of formation stages for ten permanent teeth. J Dent Res 42:1490–1502CrossRefGoogle Scholar
  3. 3.
    Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45:211–227PubMedGoogle Scholar
  4. 4.
    Köhler S, Schmelzle R, Loitz C, Püschel K (1994) Development of wisdom teeth as a criterion of age determination. Ann Anat 176:339–345CrossRefGoogle Scholar
  5. 5.
    Willems G (2001) A review of the most commonly used dental age estimation techniques. J Forensic Odonto-Stomatol 19:9–17Google Scholar
  6. 6.
    AlQahtani SJ, Hector MP, Liversidge HM (2010) Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol 142:481–490.  https://doi.org/10.1002/ajpa.21258 CrossRefPubMedGoogle Scholar
  7. 7.
    Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist, 2nd edn. Stanford University Press, StanfordGoogle Scholar
  8. 8.
    Melsen B, Wenzel A, Miletic T, Andreasen J, Vagn-Hansen PL, Terp S (1986) Dental and skeletal maturity in adoptive children: assessments at arrival and after one year in the admitting country. Ann Hum Biol 13:153–159CrossRefGoogle Scholar
  9. 9.
    Pfau RO, Sciulli PW (1994) A method for establishing the age of subadults. J Forensic Sci 39:165–176CrossRefGoogle Scholar
  10. 10.
    Hassel B, Farman AG (1995) Skeletal maturation evaluation using cervical vertebrae. Am J Orthod Dentofac Orthop 107:58–66.  https://doi.org/10.1016/S0889-5406(95)70157-5 CrossRefGoogle Scholar
  11. 11.
    Kullman L (1995) Accuracy of two dental and one skeletal age estimation method in Swedish adolescents. Forensic Sci Int 75:225–236CrossRefGoogle Scholar
  12. 12.
    Nortjè CJ, Harris AMP (1986) Maxillo-facial radiology in forensic dentistry: a review. J Forensic Odont-Stomatol 4:29–38Google Scholar
  13. 13.
    Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schútz HW, Kaatsch HJ et al (2000) Age estimation: the state of the art in relation to the specific demands of forensic practice. Int J Legal Med 113:129–136CrossRefGoogle Scholar
  14. 14.
    Schmeling A, Geserick G, Reisinger W, Olze A (2007) Age estimation. Forensic Sci Int 165:178–181.  https://doi.org/10.1016/j.forsciint.2006.05.016 CrossRefPubMedGoogle Scholar
  15. 15.
    Willems G, Van Olmen A, Spiessens B, Carels C (2001) Dental age estimation in Belgian children: Demirjian’s technique revisited. J Forensic Sci 46:893–895CrossRefGoogle Scholar
  16. 16.
    Franco A, Thevissen P, Fieuws S, Souza PHC, Willems G (2013) Applicability of Willems model for dental age estimation in Brazilian children. Forensic Sci Int 231:401.e1–401.e4.  https://doi.org/10.1016/j.forsciint.2013.05.030 CrossRefGoogle Scholar
  17. 17.
    Altalie S, Thevissen P, Fieuws S, Willems G (2014) Optimal dental age estimation practice in united Arabic emirates’ children. J Forensic Sci 59:383–385.  https://doi.org/10.1111/1556-4029.12351 CrossRefPubMedGoogle Scholar
  18. 18.
    Frítola M, Fujikawa AS, Ferreira FM, Franco A, Fernandes A (2015) Dental age estimation of Brazilian children comparing Demirjian’s and Willems’ methods. Rev Bras Odont Legal 2:26–34.  https://doi.org/10.21117/rbol.v2i1.18 CrossRefGoogle Scholar
  19. 19.
    Yusof MY, Thevissen PW, Fieuws S, Willems G (2014) Dental age estimation in Malay children based on all permanent teeth types. Int J Legal Med 128:329–333.  https://doi.org/10.1007/s00414-013-0825-8 CrossRefPubMedGoogle Scholar
  20. 20.
    Thevissen PW, Fieuws S, Willems G (2010) Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults? Int J Legal Med 124:35–42.  https://doi.org/10.1007/s00414-009-0329-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Thevissen PW, Fieuws S, Willems G (2011) Human third molar development: measurements versus scores as age predictor. Arch Oral Biol 56:1035–1040.  https://doi.org/10.1016/j.archoralbio.2011.04.008 CrossRefPubMedGoogle Scholar
  22. 22.
    Thevissen PW, Fieuws S, Willems G (2013) Third molar development: evaluation of nine tooth development registration techniques for age estimation. J Forensic Sci 58:393–397.  https://doi.org/10.1111/1556-4029.12063 CrossRefPubMedGoogle Scholar
  23. 23.
    Gilli G (1996) The assessment of skeletal maturation. Horm Res 45(Suppl 2):49–52CrossRefGoogle Scholar
  24. 24.
    Tanner JM (2001) Assessment of skeletal maturity and prediction of adult height (TW3 method), 3rd edn. WB Saunders, LondonGoogle Scholar
  25. 25.
    Roche AF, Chumlea WC, Thissen D (1988) Assessing the skeletal maturity of the hand-wrist: FELS method. Charles C. Thomas, SpringfieldGoogle Scholar
  26. 26.
    Baccetti T, Franchi L, McNamara J (2005) The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Semin Orthod 11:119–129.  https://doi.org/10.1053/j.sodo.2005.04.005 CrossRefGoogle Scholar
  27. 27.
    Seedat AK, Forsberg CD (2005) An evaluation of the third cervical vertebra (C3) as a growth indicator in black subjects. SADJ 60:156,158–156,160Google Scholar
  28. 28.
    Nanda R, Snodell SF, Bollu P (2012) Transverse growth of maxilla and mandible. Semin Orthod 18:100–107.  https://doi.org/10.1053/j.sodo.2011.10.007 CrossRefGoogle Scholar
  29. 29.
    Thevissen PW, Kaur J, Willems G (2012) Human age estimation combining third molar and skeletal development. Int J Legal Med 126:285–292.  https://doi.org/10.1007/s00414-011-0639-5 CrossRefPubMedGoogle Scholar
  30. 30.
    Cameriere R, Luca SD, Biagi R, Cingolani M, Farronato G, Ferrante L (2012) Accuracy of three age estimation methods in children by measurements of developing teeth and carpals and epiphyses of the ulna and radius. J Forensic Sci 57:1263–1270.  https://doi.org/10.1111/j.1556-4029.2012.02120.x CrossRefPubMedGoogle Scholar
  31. 31.
    Thevissen PW, Kvaal SI (2012) Ethics in age estimation of unaccompanied minor. J Forensic Odontostomatol 30:84–102PubMedGoogle Scholar
  32. 32.
    Boldsen JL, Milner GR, Konigsberg LW, Wood JW (2002) Transition analysis: a new method for estimating age from skeletons. In: Hoppa RD, Vaupel JW (eds) Paleodemography: age distributions from skeletal samples. Cambridge University Press, Cambridge, pp 73–106CrossRefGoogle Scholar
  33. 33.
    Fieuws S, Willems G, Larsen-Tangmose S, Lynnerup N, Boldsen J, Thevissen P (2016) Obtaining appropriate interval estimates for age when multiple indicators are used: evaluation of an ad-hoc procedure. Int J Legal Med 130:489–499.  https://doi.org/10.1007/s00414-015-1200-8 CrossRefPubMedGoogle Scholar
  34. 34.
    American Dental Association Council on Scientific Affairs (2006) The use of dental radiographs: updates and recommendations. JADA 137:1304–1312Google Scholar
  35. 35.
    Thevissen P, Kvaal SI, Willems G (2012) Ethics in age estimation of unaccompanied minors. J Forensic Odontostomatol 30:84–102PubMedGoogle Scholar
  36. 36.
    Schmidt S, Henke CA, Wittschieber D, Vieth V, Bajanowski T, Ramsthaler F, Püschel K, Pfeiffer H, Schmeling A, Schulz R (2016) Optimising resonance magnetic imaging-based evaluation of the ossification of the medial clavicular epiphysis: a multi-centre study. Int J Legal Med 130:1615–1621.  https://doi.org/10.1007/s00414-016-1442-0 CrossRefPubMedGoogle Scholar
  37. 37.
    Hillewig E, Degroote J, Van der Paelt T, Visscher A, Vandemaele P, Lutin B et al (2013) Magnetic resonance imaging of the external extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int J Legal Med 127:677–689.  https://doi.org/10.1007/s00414-012-0798-z CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Timme M, Ottow C, Schulz R, Pfeiffer H, Heindel W, Vieth V, Schmeling A, Schmidt S (2017) Magnetic resonance imaging of the distal radial epiphysis: a new criterion of maturity for determining whether the age of 18 has been completed? Int J Legal Med 131:579–584.  https://doi.org/10.1007/s00414-016-1502-5 CrossRefPubMedGoogle Scholar
  39. 39.
    Urschler M, Krauskopf A, Widek T, Sorantin E, Ehammer T, Borkenstein M, Yen K, Scheurer E (2016) Applicability of Greulich-Pyle and Tanner-Whitehouse grading methods to MRI when assessing hand bone age in forensic age estimation: a pilot study. Forensic Sci Int 266:281–288.  https://doi.org/10.1016/j.forsciint.2016.06.016 CrossRefPubMedGoogle Scholar
  40. 40.
    Serin J, Rérolle C, Pucheux J, Dedouit F, Telmon N, Savall F, Saint-Martin P (2016) Contribution of magnetic resonance imaging of the wrist and hand to forensic age assessment. Int J Legal Med 130:1121–1128.  https://doi.org/10.1007/s00414-016-1362-z CrossRefPubMedGoogle Scholar
  41. 41.
    Serinelli S, Panebianco V, Martino M, Battisti S, Rodacki K, Marinelli E, Zaccagna F, Semelka RC, Tomei E (2015) Accuracy of MRI skeletal age estimation for subjects 12-19. Potential use for subjects of unknown age. Int J Legal Med 129:609–617.  https://doi.org/10.1007/s00414-015-1161-y CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    de Tobel J, Hillewig E, Bogaert S, Deblaere K, Verstraete K (2017) Magnetic resonance imaging of third molars: developing a protocol suitable for forensic age estimation. Ann Hum Biol 44:130–139.  https://doi.org/10.1007/s00414-015-1161-y CrossRefPubMedGoogle Scholar
  43. 43.
    de Tobel J, Hillewig E, Verstraete K (2017) Forensic age estimation based on magnetic resonance imaging of third molars converting 2D staging into 3D staging. Ann Hum Biol 44:121–129.  https://doi.org/10.1080/03014460.2016.1223884 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    de Tobel J, Phlypo I, Fieuws S, Politis C, Koenraad L, Verstraete et al (2017) Forensic age estimation based on development of third molars: a staging technique for magnetic resonance imaging. J Forensic Odontostomatol 35:125–146Google Scholar
  45. 45.
    Degalp R, Aka PS, Canturk N, Kedici I (2014) Age estimation from fetus and infant tooth and head measurements. Int J Legal Med 128:501–508.  https://doi.org/10.1007/s00414-013-0935-3 CrossRefGoogle Scholar
  46. 46.
    Shi L, Jiang F, Ouyang F, Zhang J, Wang Z, Shen X (2018) DNA methylation markers in combination with skeletal and dental ages to improve age estimation in children. Forensic Sci Int Genet 33:1–9CrossRefGoogle Scholar
  47. 47.
    Bassed RB, Briggs C, Drummer OH (2011) Age estimation using CT images of the third molar tooth, the medial clavicular epiphysis, and the spheno-occipital synchondrosis: a multifactorial approach. Forensic Sci Int 273:e1–273.e5.  https://doi.org/10.1016/j.forsciint.2011.06.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Akiko Kumagai
    • 1
  • Guy Willems
    • 2
  • Ademir Franco
    • 1
  • Patrick Thevissen
    • 1
  1. 1.Department of Imaging and Pathology, Forensic OdontologyKU LeuvenLeuvenBelgium
  2. 2.Department of Oral Health Sciences, Orthodontics, KU Leuven and DentistryUniversity Hospitals LeuvenLeuvenBelgium

Personalised recommendations