International Journal of Legal Medicine

, Volume 132, Issue 6, pp 1675–1684 | Cite as

Multiplex quantitative imaging of human myocardial infarction by mass spectrometry-immunohistochemistry

  • Aleksandra Aljakna
  • Estelle Lauer
  • Sébastien Lenglet
  • Silke Grabherr
  • Tony Fracasso
  • Marc Augsburger
  • Sara Sabatasso
  • Aurélien Thomas
Original Article


Simultaneous assessment of a panel of protein markers is becoming essential in order to enhance biomarker research and improve diagnostics. Specifically, postmortem diagnostics of early myocardial ischemia in sudden cardiac death cases could benefit from a multiplex marker assessment in the same tissue section. Current analytical antibody-based techniques (immunohistochemistry and immunofluorescence) limit multiplex analysis usually to not more than three antibodies. In this study, mass spectrometry-immunohistochemistry (MS-IHC) was performed by combining laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with rare-metal-isotope-tagged antibodies as a technique for multiplex analysis of human postmortem myocardial tissue samples. Tissue sections with myocardial infarction were simultaneously analyzed for seven primary, rare-metal-isotope-tagged antibodies (troponin T, myoglobin, fibronectin, C5b-9, unphosphorylated connexin 43, VEGF-B, and JunB). Comparison between the MS-IHC approach and chromogenic IHC showed similar patterns in ionic and optical images. In addition, absolute quantification was performed by MS-IHC, providing a proportional relationship between the signal intensity and the local marker concentration in tissue sections. These data demonstrated that LA-ICP-MS combined with rare-metal-isotope-tagged antibodies is an efficient strategy for simultaneous testing of multiple markers and allows not only visualization of molecules within the tissue but also quantification of the signal. Such imaging approach has a great potential in both diagnostics and pathology-related research.


Mass spectrometry-immunohistochemistry Multiplex tissue imaging Biomarker Myocardial ischemia Forensic pathology 



We would like to thank Max Villa and Catia Pomponio for the support and assistance with LA-ICP-MS and immunohistochemistry, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required. All cases included in this study were obtained from the autopsy database in our center. In agreement with the local ethics committee and the local general prosecutor, these cases can be included in this type of studies, provided that they are anonymized. In this investigation, no information allowing the identification of a person is given. People, who had previously refused, in a written form, their consent to bequeath their body parts for research use, were excluded from the study.

Supplementary material

414_2018_1813_MOESM1_ESM.jpg (733 kb)
Supplementary Fig1 (JPEG 732 kb)
414_2018_1813_MOESM2_ESM.jpg (1.6 mb)
Supplementary Fig2 (JPEG 1653 kb)
414_2018_1813_MOESM3_ESM.jpg (286 kb)
Supplementary Fig3 (JPEG 285 kb)
414_2018_1813_MOESM4_ESM.docx (26 kb)
Table S1 (DOCX 26 kb)


  1. 1.
    Campobasso CP, Dell’Erba AS, Addante A, Zotti F, Marzullo A, Colonna MF (2008) Sudden cardiac death and myocardial ischemia indicators: a comparative study of four immunohistochemical markers. Am J Forensic Med Pathol 29(2):154–161. CrossRefPubMedGoogle Scholar
  2. 2.
    Sabatasso S, Mangin P, Fracasso T, Moretti M, Docquier M, Djonov V (2016) Early markers for myocardial ischemia and sudden cardiac death. Int J Legal Med 130(5):1265–1280. CrossRefPubMedGoogle Scholar
  3. 3.
    Fineschi V (2015) Measuring myocyte oxidative stress and targeting cytokines to evaluate inflammatory response and cardiac repair after myocardial infarction. Curr Vasc Pharmacol 13(1):3–5CrossRefGoogle Scholar
  4. 4.
    Stack EC, Wang C, Roman KA, Hoyt CC (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods (San Diego, Calif) 70(1):46–58. CrossRefGoogle Scholar
  5. 5.
    Dixon AR, Bathany C, Tsuei M, White J, Barald KF, Takayama S (2015) Recent developments in multiplexing techniques for immunohistochemistry. Expert Rev Mol Diagn 15(9):1171–1186. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Levenson RM, Borowsky AD, Angelo M (2015) Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab Investig 95(4):397–405. CrossRefPubMedGoogle Scholar
  7. 7.
    Newell EW, Davis MM (2014) Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat Biotechnol 32(2):149–157. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chattopadhyay PK, Gierahn TM, Roederer M, Love JC (2014) Single-cell technologies for monitoring immune systems. Nat Immunol 15(2):128–135. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822. CrossRefGoogle Scholar
  10. 10.
    Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe'er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science (New York, NY) 332(6030):687–696. CrossRefGoogle Scholar
  11. 11.
    Lauer E, Villa M, Jotterand M, Vilarino R, Bollmann M, Michaud K, Grabherr S, Augsburger M, Thomas A (2017) Imaging mass spectrometry of elements in forensic cases by LA-ICP-MS. Int J Legal Med 131(2):497–500. CrossRefPubMedGoogle Scholar
  12. 12.
    Thomas A, Chaurand P (2014) Advances in tissue section preparation for MALDI imaging MS. Bioanalysis 6(7):967–982. CrossRefPubMedGoogle Scholar
  13. 13.
    Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, Levenson RM, Lowe JB, Liu SD, Zhao S, Natkunam Y, Nolan GP (2014) Multiplexed ion beam imaging of human breast tumors. Nat Med 20(4):436–442. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schuffler PJ, Grolimund D, Buhmann JM, Brandt S, Varga Z, Wild PJ, Gunther D, Bodenmiller B (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11(4):417–422. CrossRefPubMedGoogle Scholar
  15. 15.
    Robichaud G, Garrard KP, Barry JA, Muddiman DC (2013) MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J Am Soc Mass Spectrom 24(5):718–721. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bemis KD, Harry A, Eberlin LS, Ferreira C, van de Ven SM, Mallick P, Stolowitz M, Vitek O (2015) Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics 31(14):2418–2420. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Matusch A, Depboylu C, Palm C, Wu B, Hoglinger GU, Schafer MK, Becker JS (2010) Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson’s disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Am Soc Mass Spectrom 21(1):161–171. CrossRefPubMedGoogle Scholar
  18. 18.
    Becker JS, Zoriy MV, Pickhardt C, Palomero-Gallagher N, Zilles K (2005) Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77(10):3208–3216. CrossRefPubMedGoogle Scholar
  19. 19.
    Jasra SK, Badian C, Macri I, Ra P (2012) Recognition of early myocardial infarction by immunohistochemical staining with cardiac troponin-I and complement C9. J Forensic Sci 57(6):1595–1600. CrossRefPubMedGoogle Scholar
  20. 20.
    Jenkins CP, Cardona DM, Bowers JN, Oliai BR, Allan RW, Normann SJ (2010) The utility of C4d, C9, and troponin T immunohistochemistry in acute myocardial infarction. Arch Pathol Lab Med 134(2):256–263. CrossRefPubMedGoogle Scholar
  21. 21.
    Ortmann C, Pfeiffer H, Brinkmann B (2000) A comparative study on the immunohistochemical detection of early myocardial damage. Int J Legal Med 113(4):215–220CrossRefGoogle Scholar
  22. 22.
    Brinkmann B, Sepulchre MA, Fechner G (1993) The application of selected histochemical and immunohistochemical markers and procedures to the diagnosis of early myocardial damage. Int J Legal Med 106(3):135–141CrossRefGoogle Scholar
  23. 23.
    Piercecchi-Marti MD, Lepidi H, Leonetti G, Vire O, Cianfarani F, Pellissier JF (2001) Immunostaining by complement C9: a tool for early diagnosis of myocardial infarction and application in forensic medicine. J Forensic Sci 46(2):328–334CrossRefGoogle Scholar
  24. 24.
    Edston E, Kawa K (1995) Immunohistochemical detection of early myocardial infarction. An evaluation of antibodies against the terminal complement complex (C5b-9). Int J Legal Med 108(1):27–30CrossRefGoogle Scholar
  25. 25.
    Schafer H, Mathey D, Hugo F, Bhakdi S (1986) Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol 137(6):1945–1949PubMedGoogle Scholar
  26. 26.
    Kawamoto O, Michiue T, Ishikawa T, Maeda H (2014) Immunohistochemistry of connexin43 and zonula occludens-1 in the myocardium as markers of early ischemia in autopsy material. Histol Histopathol 29(6):767–775. CrossRefPubMedGoogle Scholar
  27. 27.
    Matsushita T, Takamatsu T (1997) Ischaemia-induced temporal expression of connexin43 in rat heart. Virchows Arch 431(6):453–458CrossRefGoogle Scholar
  28. 28.
    Hatanaka K, Kawata H, Toyofuku T, Yoshida K (2004) Down-regulation of connexin43 in early myocardial ischemia and protective effect by ischemic preconditioning in rat hearts in vivo. Jpn Heart J 45(6):1007–1019CrossRefGoogle Scholar
  29. 29.
    Bry M, Kivela R, Leppanen VM, Alitalo K (2014) Vascular endothelial growth factor-B in physiology and disease. Physiol Rev 94(3):779–794. CrossRefPubMedGoogle Scholar
  30. 30.
    Ogawa H, Suefuji H, Soejima H, Nishiyama K, Misumi K, Takazoe K, Miyamoto S, Kajiwara I, Sumida H, Sakamoto T, Yoshimura M, Kugiyama K, Yasue H, Matsuo K (2000) Increased blood vascular endothelial growth factor levels in patients with acute myocardial infarction. Cardiology 93(1–2):93–99CrossRefGoogle Scholar
  31. 31.
    Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342(9):626–633. CrossRefPubMedGoogle Scholar
  32. 32.
    Harpster MH, Bandyopadhyay S, Thomas DP, Ivanov PS, Keele JA, Pineguina N, Gao B, Amarendran V, Gomelsky M, McCormick RJ, Stayton MM (2006) Earliest changes in the left ventricular transcriptome postmyocardial infarction. Mamm Genome 17(7):701–715. CrossRefPubMedGoogle Scholar
  33. 33.
    Turillazzi E, Pomara C, Bello S, Neri M, Riezzo I, Fineschi V (2015) The meaning of different forms of structural myocardial injury, immune response and timing of infarct necrosis and cardiac repair. Curr Vasc Pharmacol 13(1):6–19CrossRefGoogle Scholar
  34. 34.
    Ogrinc Potocnik N, Porta T, Becker M, Heeren RM, Ellis SR (2015) Use of advantageous, volatile matrices enabled by next-generation high-speed matrix-assisted laser desorption/ionization time-of-flight imaging employing a scanning laser beam. Rapid Commun Mass Spectrom 29(23):2195–2203. CrossRefPubMedGoogle Scholar
  35. 35.
    Dobrowolska J, Dehnhardt M, Matusch A, Zoriy M, Palomero-Gallagher N, Koscielniak P, Zilles K, Becker JS (2008) Quantitative imaging of zinc, copper and lead in three distinct regions of the human brain by laser ablation inductively coupled plasma mass spectrometry. Talanta 74(4):717–723. CrossRefPubMedGoogle Scholar
  36. 36.
    Sabine Becker J (2013) Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): state of the art and future developments. Journal of Mass Spectrometry : JMS 48(2):255–268. CrossRefPubMedGoogle Scholar
  37. 37.
    Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C, Becker JS (2010) Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev 29(1):156–175. CrossRefPubMedGoogle Scholar
  38. 38.
    Al-Salam S, Hashmi S (2014) Galectin-1 in early acute myocardial infarction. PLoS One 9(1):e86994. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hashmi S, Al-Salam S (2015) Galectin-3 is expressed in the myocardium very early post-myocardial infarction. Cardiovasc Pathol 24(4):213–223. CrossRefPubMedGoogle Scholar
  40. 40.
    Chan W, White DA, Wang XY, Bai RF, Liu Y, Yu HY, Zhang YY, Fan F, Schneider HG, Duffy SJ, Taylor AJ, Du XJ, Gao W, Gao XM, Dart AM (2013) Macrophage migration inhibitory factor for the early prediction of infarct size. J Am Heart Assoc 2(5):e000226. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    White DA, Fang L, Chan W, Morand EF, Kiriazis H, Duffy SJ, Taylor AJ, Dart AM, Du XJ, Gao XM (2013) Pro-inflammatory action of MIF in acute myocardial infarction via activation of peripheral blood mononuclear cells. PLoS One 8(10):e76206. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aleksandra Aljakna
    • 1
  • Estelle Lauer
    • 1
  • Sébastien Lenglet
    • 1
  • Silke Grabherr
    • 1
  • Tony Fracasso
    • 1
  • Marc Augsburger
    • 1
  • Sara Sabatasso
    • 1
  • Aurélien Thomas
    • 1
    • 2
  1. 1.University Center of Legal Medicine, Lausanne-GenevaGenevaSwitzerland
  2. 2.Faculty of Biology and MedicineUniversity of LausanneLausanne 25Switzerland

Personalised recommendations