Advertisement

International Journal of Legal Medicine

, Volume 132, Issue 5, pp 1263–1272 | Cite as

Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples

  • Jennifer D. Churchill
  • Monika Stoljarova
  • Jonathan L. King
  • Bruce Budowle
Original Article

Abstract

The mitochondrial genome has a number of characteristics that provide useful information to forensic investigations. Massively parallel sequencing (MPS) technologies offer improvements to the quantitative analysis of the mitochondrial genome, specifically the interpretation of mixed mitochondrial samples. Two-person mixtures with nuclear DNA ratios of 1:1, 5:1, 10:1, and 20:1 of individuals from different and similar phylogenetic backgrounds and three-person mixtures with nuclear DNA ratios of 1:1:1 and 5:1:1 were prepared using the Precision ID mtDNA Whole Genome Panel and Ion Chef, and sequenced on the Ion PGM or Ion S5 sequencer (Thermo Fisher Scientific, Waltham, MA, USA). These data were used to evaluate whether and to what degree MPS mixtures could be deconvolved. Analysis was effective in identifying the major contributor in each instance, while SNPs from the minor contributor’s haplotype only were identified in the 1:1, 5:1, and 10:1 two-person mixtures. While the major contributor was identified from the 5:1:1 mixture, analysis of the three-person mixtures was more complex, and the mixed haplotypes could not be completely parsed. These results indicate that mixed mitochondrial DNA samples may be interpreted with the use of MPS technologies.

Keywords

Mitochondrial DNA Mixtures Massively parallel sequencing Ion S5 Ion PGM 

Notes

Acknowledgements

We would like to thank Thermo Fisher Scientific for providing reagents and technical support necessary to perform this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

414_2018_1799_MOESM1_ESM.xlsm (14 mb)
ESM 1 (XLSM 14368 kb)
414_2018_1799_MOESM2_ESM.docx (23 kb)
Supplementary Figure 4 (DOCX 22 kb)
414_2018_1799_MOESM3_ESM.xlsm (15.3 mb)
ESM 2 (XLSM 15678 kb)
414_2018_1799_MOESM4_ESM.xlsm (12.1 mb)
Supplementary Figure 8 (XLSM 12440 kb)
414_2018_1799_MOESM5_ESM.xlsm (12.1 mb)
Supplementary Figure 9 (XLSM 12379 kb)
414_2018_1799_MOESM6_ESM.xlsm (12.7 mb)
Supplementary Figure 10 (XLSM 12954 kb)

References

  1. 1.
    Robin ED, Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136:507–513CrossRefPubMedGoogle Scholar
  2. 2.
    Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci 77:6715–6719CrossRefPubMedGoogle Scholar
  3. 3.
    Guevara EK, Palo JU, Guillen S, Sajantila A (2016) MtDNA and Y-chromosomal diversity in the Chachapoya, a population from the Northeast Peruvian Andes-Amazon divide. Am J Hum Biol 28:857–867CrossRefPubMedGoogle Scholar
  4. 4.
    Just RS, Scheible MK, Fast SA, Sturk-Andreaggi K, Rock AW, Bush JM, Higginbotham JL, Peck MA, Ring JD, Huber GE, Xavier C, Strobl C, Lyons EA, Diegoli TM, Bodner M, Fendt L, Kralj P, Nagl S, Niederwieser D, Zimmermann B, Parson W, Irwin JA (2015) Full mtGenome reference data: development and characterization of 588 forensic-quality haplotypes representing three U.S. populations. Forensic Sci Int Genet 14:141–155CrossRefPubMedGoogle Scholar
  5. 5.
    King JL, LaRue BL, Novroski NM, Stoljarova M, Seo SB, Zeng X, Warshauer DH, Davis CP, Parson W, Sajantila A, Budowle B (2014) High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. Forensic Sci Int Genet 12:128–135CrossRefPubMedGoogle Scholar
  6. 6.
    Lopopolo M, Borsting C, Pereira V, Morling N (2016) A study of the peopling of Greenland using next generation sequencing of complete mitochondrial genomes. Am J Phys Anthropol 161:698–704CrossRefPubMedGoogle Scholar
  7. 7.
    Park S, Cho S, Seo HJ, Lee JH, Kim MY, Lee SD (2017) Entire mitochondrial DNA sequencing on massively parallel sequencing for the Korean population. J Korean Med Sci 32:587–592CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Parson W, Dur A (2007) EMPOP-A forensic mtDNA database. Forensic Sci Int Genet 1:88–92CrossRefPubMedGoogle Scholar
  9. 9.
    Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM, Souto L, Fendt L, Delport R, Langit R, Wootton S, Lagace R, Irwin J (2013) Evaluation of next generation mtGenome sequencing using the ion torrent personal genome machine (PGM). Forensic Sci Int Genet 7:632–639CrossRefPubMedGoogle Scholar
  10. 10.
    Irwin JA, Saunier JL, Niederstatter H, Strouss KM, Sturk KA, Diegoli TM, Brandstatter A, Parson W, Parsons TJ (2009) Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J Mol Evol 68:516–527CrossRefPubMedGoogle Scholar
  11. 11.
    Malyarchuk B, Litvinov A, Derenko M, Skonieczna K, Grzybowski T, Grosheva A, Shneider Y, Rychkov S, Zhukova O (2017) Mitogenomic diversity in Russians and poles. Forensic Sci Int Genet 30:51–56CrossRefPubMedGoogle Scholar
  12. 12.
    Saunier JL, Irwin JA, Strouss KM, Ragab H, Sturk KA, Parsons TJ (2009) Mitochondrial control region sequences from an Egyptian population sample. Forensic Sci Int Genet 3:e97–e103CrossRefPubMedGoogle Scholar
  13. 13.
    Irwin JA, Saunier JL, Beh P, Strouss KM, Paintner CD, Parsons TJ (2009) Mitochondrial DNA control region variation in a population sample from Hong Kong, China. Forensic Sci Int Genet 3:e119–e125CrossRefPubMedGoogle Scholar
  14. 14.
    Boattini A, Castri L, Sarno S, Useli A, Cioffi M, Sazzini M, Garagnani P, De Fanti S, Pettener D, Luiselli D (2013) mtDNA variation in East Africa unravels the history of Afro-Asiatic groups. Am J Phys Anthropol 150:375–385CrossRefPubMedGoogle Scholar
  15. 15.
    Chaitanya L, van Oven M, Brauer S, Zimmermann B, Huber G, Xavier C, Parson W, de Knijff P, Kayser M (2016) High-quality mtDNA control region sequences from 680 individuals sampled across the Netherlands to establish a national forensic mtDNA reference database. Forensic Sci Int Genet 21:158–167CrossRefPubMedGoogle Scholar
  16. 16.
    Holland MM, McQuillan MR, O’Hanlon KA (2011) Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy. Croat Med J 52:299–313CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kim H, Erlich HA, Calloway CD (2015) Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions. Croat Med J 56:208–217CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chaitanya L, Ralf A, van Oven M, Kupiec T, Chang J, Lagace R, Kayser M (2015) Simultaneous whole mitochondrial genome sequencing with short overlapping amplicons suitable for degraded DNA using the ion torrent personal genome machine. Hum Mutat 36:1236–1247CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Parson W, Huber G, Moreno L, Madel MB, Brandhagen MD, Nagl S, Xavier C, Eduardoff M, Callaghan TC, Irwin JA (2015) Massively parallel sequencing of complete mitochondrial genomes from hair shaft samples. Forensic Sci Int Genet 15:8–15CrossRefPubMedGoogle Scholar
  20. 20.
    Cho S, Kim MY, Lee JH, Lee SD (2017) Assessment of mitochondrial DNA heteroplasmy detected on commercial panel using MPS system with artificial mixture samples. Int J Legal Med.  https://doi.org/10.1007/s00414-017-1755-7
  21. 21.
    Coble MD, Just RS, O’Callaghan JE, Letmanyi IH, Peterson CT, Irwin JA, Parsons TJ (2004) Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians. Int J Legal Med 118:137–146CrossRefPubMedGoogle Scholar
  22. 22.
    Parsons TJ, Coble MD (2001) Increasing the forensic discrimination of mitochondrial DNA testing through analysis of the entire mitochondrial DNA genome. Croat Med J 42:304–309PubMedGoogle Scholar
  23. 23.
    Bodner M, Iuvaro A, Strobl C, Nagl S, Huber G, Pelotti S, Pettener D, Luiselli D, Parson W (2015) Helena, the hidden beauty: resolving the most common West Eurasian mtDNA control region haplotype by massively parallel sequencing an Italian population sample. Forensic Sci Int Genet 15:21–26CrossRefPubMedGoogle Scholar
  24. 24.
    Zhou Y, Guo F, Yu J, Liu F, Zhao J, Shen H, Zhao B, Jia F, Sun Z, Song H, Jiang X (2016) Strategies for complete mitochondrial genome sequencing on Ion Torrent PGM™ platform in forensic sciences. Forensic Sci Int Genet 22:11–21CrossRefPubMedGoogle Scholar
  25. 25.
    Parson W, Gusmao L, Hares DR, Irwin JA, Mayr WR, Morling N, Pokorak E, Prinz M, Salas A, Schneider PM, Parsons TJ (2014) DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 13:134–142CrossRefPubMedGoogle Scholar
  26. 26.
    Stewart JEB, Aagaard PJ, Pokorak EG, Polansky D, Budowle B (2003) Evaluation of multicapillary electrophoresis instrument for mitochondrial DNA typing. J Forensic Sci 48:571–580CrossRefPubMedGoogle Scholar
  27. 27.
    Davis C, Peters D, Warshauer D, King J, Budowle B (2015) Sequencing the hypervariable regions of human mitochondrial DNA using massively parallel sequencing: enhanced data acquisition for DNA samples encountered in forensic testing. Legal Med 17:123–127CrossRefPubMedGoogle Scholar
  28. 28.
    Holland MM, Wilson LA, Copeland S, Dimick G, Holland CA, Bever R, McElhoe JA (2017) MPS analysis of the mtDNA hypervariable regions on the MiSeq with improved enrichment. Int J Legal Med 131:919–931CrossRefPubMedGoogle Scholar
  29. 29.
    Lindberg MR, Schmedes SE, Hewitt FC, Haas JL, Ternus KL, Kadavy DR, Budowle B (2016) A comparison and integration of MiSeq and MinION platforms for sequencing single source and mixed mitochondrial genomes. PLoS One 11:e0167600.  https://doi.org/10.1371/journal.pone.0167600 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li M, Schonberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M (2010) Detecting Heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87:237–249CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Qiagen (2012) QIAamp® DNA mini and blood mini handbook. Qiagen, ValenciaGoogle Scholar
  32. 32.
    Thermo Fisher Scientific (2015) Quantifiler™ HP and Trio DNA Quantification Kits User guide. Revision E Thermo Fisher Scientific, WalthamGoogle Scholar
  33. 33.
    Thermo Fisher Scientific (2016) Precision ID panels with the Ion PGM™ System Application Guide. Revision A Thermo Fisher Scientific, WalthamGoogle Scholar
  34. 34.
    Thermo Fisher Scientific (2015) Ion PGM™ Hi-Q™ Chef Kit. Revision A Thermo Fisher Scientific, WalthamGoogle Scholar
  35. 35.
    Churchill JD, King JL, Chakraborty R, Budowle B (2016) Effects of the Ion PGM Hi-Q sequencing chemistry on sequence data quality. Int J Legal Med 130:1169–1180CrossRefPubMedGoogle Scholar
  36. 36.
    Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147CrossRefPubMedGoogle Scholar
  37. 37.
    King JL, Sajantila A, Budowle B (2014) mitoSAVE: mitochondrial sequence analysis of variants in Excel. Forensic Sci Int Genet 12:122–125CrossRefPubMedGoogle Scholar
  38. 38.
    Scientific Working Group on DNA Analysis Methods (SWGDAM). (2013) Interpretation guidelines for mitochondrial DNA analysis by forensic DNA testing laboratories http://media.wix.com/ugd/4344b0_c5e20877c02f403c9ba16770e8d41937.pdf
  39. 39.
    Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV)high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192CrossRefPubMedGoogle Scholar
  40. 40.
    Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kloss-Brandstatter A, Pacher D, Schonherr S, Weissensteiner H, Binna R, Specht G, Kronenberg F (2011) HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum Mutat 32:25–32CrossRefPubMedGoogle Scholar
  42. 42.
    Weissensteiner H, Pacher D, Kloss-Brandstatter A, Forer L, Specht G, Bandelt HJ, Kronenberg F, Antonio Salas A, Schonherr S (2016) HaploGrep2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res 44:58–63CrossRefGoogle Scholar
  43. 43.
    Riman S, Kiesler KM, Borsuk LA, Vallone PM (2017) Characterization of NIST human mitochondrial DNA SRM-2392 and SRM-2392-I standard reference materials by next generation sequencing. Forensic Sci Int Genet 29:181–192CrossRefPubMedGoogle Scholar
  44. 44.
    Seo SB, Zeng X, King JL, Larue BL, Assidi M, Al-Qahtani MH, Sajantila A, Budowle B (2015) Underlying data for sequencing the mitochondrial genome with the massively parallel sequencing platform Ion Torrent™ PGM™. BMC Genomics 16(Suppl1):S4CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bragg LM, Stone G, Margaret K, Butler MK, Hugenholtz P, Tyson GW (2013) Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput Biol 9:e1003031.  https://doi.org/10.1371/journal.pcbi.1003031 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shay JW, Pierce DJ, Werbin H (1990) Mitochondrial DNA copy number is proportional to Total cell DNA under a variety of growth conditions. J Biol Chem 265:14802–14807PubMedGoogle Scholar
  47. 47.
    Bright J, Taylor D, McGovern C, Cooper S, Russell L, Abarno D, Buckleton J (2016) Developmental validation of STRmix™, expert software for the interpretation of forensic DNA profiles. Forensic Sci Int Genet 23:226–239CrossRefPubMedGoogle Scholar
  48. 48.
    Bright J, Taylor D, Curran JM, Buckleton JS (2013) Developing allelic and stutter peak height models for a continuous method of DNA interpretation. Forensic Sci Int Genet 7:296–304CrossRefPubMedGoogle Scholar
  49. 49.
    Scientific Working Group on DNA Analysis Methods (SWGDAM). (2015) Guidelines for the validation of probabilistic genotyping systems. https://docs.wixstatic.com/ugd/4344b0_22776006b67c4a32a5ffc04fe3b56515.pdf
  50. 50.
    Moretti TR, Just RS, Kehl SC, Willis LE, Buckleton JS, Bright J, Taylor DA, Onorato AJ (2017) Internal validation of STRmix™ for the interpretation of single source and mixed DNA profiles. Forensic Sci Int Genet 29:126–144CrossRefPubMedGoogle Scholar
  51. 51.
    Vohr SH, Gordon R, Eizenga JM, Erlich HA, Calloway CD, Green RE (2017) A phylogenetic approach for haplotype analysis of sequence data from complex mitochondrial mixtures. Forensic Sci Int Genet 30:93–105CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Human IdentificationUniversity of North Texas Health Science CenterFort WorthUSA
  2. 2.Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
  3. 3.Center of Excellence in Genomic Medicine Research (CEGMR)King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations