Advertisement

International Journal of Legal Medicine

, Volume 132, Issue 6, pp 1545–1553 | Cite as

Improved Y-STR typing for disaster victim identification, missing persons investigations, and historical human skeletal remains

  • Angie AmbersEmail author
  • Jitka Votrubova
  • Daniel Vanek
  • Antti Sajantila
  • Bruce Budowle
Original Article

Abstract

Bones are a valuable source of DNA in forensic, anthropological, and archaeological investigations. There are a number of scenarios in which the only samples available for testing are highly degraded and/or skeletonized. Often it is necessary to perform more than one type of marker analysis on such samples in order to compile sufficient data for identification. Lineage markers, such as Y-STRs and mitochondrial DNA (mtDNA), represent important systems to complement autosomal DNA markers and anthropological metadata in making associations between unidentified remains and living relatives or for characterization of the remains for historical and archaeological studies. In this comparative study, Y-STR typing with both Yfiler™ and Yfiler™ Plus (Thermo Fisher Scientific, Waltham, MA, USA) was performed on a variety of human skeletal remains, including samples from the American Civil War (1861–1865), the late nineteenth century gold rush era in Deadwood, SD, USA (1874–1877), the Seven Years’ War (1756–1763), a seventeenth-century archaeological site in Raspenava, Bohemia (Czech Republic), and World War II (1939–1945). The skeletal remains used for this study were recovered from a wide range of environmental conditions and were extracted using several common methods. Regardless of the DNA extraction method used and the age/condition of the remains, 22 out of 24 bone samples yielded a greater number of alleles using the Yfiler™ Plus kit compared to the Yfiler™ kit using the same quantity of input DNA. There was no discernable correlation with the degradation index values for these samples. Overall, the efficacy of the Yfiler™ Plus assay was demonstrated on degraded DNA from skeletal remains. Yfiler™ Plus increases the discriminatory power over the previous generation multiplex due to the larger set of Y-STR markers available for analysis and buffer modifications with the newer version kit. Increased haplotype resolution is provided to infer or refute putative genetic relationships.

Keywords

Skeletal remains Y-STR typing Degraded DNA Yfiler™ Plus Lineage testing Historical remains Rapidly mutating Y-STRs 

Notes

Acknowledgements

This project was supported in part by Thermo Fisher Scientific, the City of Deadwood, Deadwood Historical Preservation Society, Department of Forensic Medicine at the University of Helsinki, and the Czech Science Foundation (grant No. 14-36938G). We would like to thank Thermo Fisher Scientific for donation of reagents for amplification and genotyping; and Andrea Carbonaro, Laura Pelleymounter, Lisa Calandro, and Julio Mulero for their technical assistance, expertise, and accurate amplicon sizing data for the Y-STR kits used in this study. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of Thermo Fisher Scientific, the City of Deadwood, Deadwood Historical Preservation Society, University of Helsinki, or the Czech Science Foundation.

Supplementary material

414_2018_1794_MOESM1_ESM.xlsx (11 kb)
Supplementary Table 1 (XLSX 10 kb)
414_2018_1794_MOESM2_ESM.xlsx (25 kb)
Supplementary Table 2 (XLSX 24 kb)
414_2018_1794_MOESM3_ESM.xlsx (11 kb)
Supplementary Table 3 (XLSX 11 kb)
414_2018_1794_MOESM4_ESM.xlsx (10 kb)
Supplementary Table 4 (XLSX 9 kb)

References

  1. 1.
    Turney L (2010) The failure of DNA forensic testing: a case study of the 2009 Australian bushfire disaster. J New Genet Soc 29:225–240CrossRefGoogle Scholar
  2. 2.
    Hartman D, Drummer O, Eckhoff C, Scheffer JW, Stringer P (2011) The contribution of DNA to the disaster identification effort. Forensic Sci Int 205:52–58CrossRefGoogle Scholar
  3. 3.
    Riccia U, Carbonia I, Iozzia S, Nutinia AL, Continia E, Torricellia F, Focardib M, Pinchib V, Marib F, Norelli GA (2015) Genetic identification of burned corpses as a part of disaster victim identification effort. Forensic Sci Int Genet Supp Ser 5:e447–e448CrossRefGoogle Scholar
  4. 4.
    Biesecker LG, Bailey-Wilson JE, Ballantyne J, Baum H, Bieber FR, Brenner C, Budowle B, Butler JM, Carmody G, Conneally PM, Duceman B, Eisenberg A, Forman L, Kidd KK, Leclair B, Niezgoda S, Parsons TJ, Pugh E, Shaler R, Sherry ST, Sozer A, Walsh A (2005) DNA identifications after the 9/11 world trade center attack. Science 310:1122–1123CrossRefGoogle Scholar
  5. 5.
    Brenner CH, Weir BS (2003) Issues and strategies in the DNA identification of world trade center victims. Theor Popul Biol 63:173–178CrossRefGoogle Scholar
  6. 6.
    Holland MM, Cave CA, Holland CA, Bille TW (2003) Development of a quality, high throughput DNA analysis procedure for skeletal samples to assist with the identification of victims from the world trade center attacks. Croat Med J 44:264–272PubMedGoogle Scholar
  7. 7.
    Deng YJ, Li YZ, Yu XG, Li L, Wu DY, Zhou J, Man TY, Yang G, Yan JW, Cai DQ, Wang J, Yang HM, Li SB, Yu J (2005) Preliminary DNA identification for the tsunami victims in Thailand. Genomics Proteomics Bioinformatics 3:143–157CrossRefGoogle Scholar
  8. 8.
    Donkervoort S, Dolan SM, Beckwith M, Northrup TP, Sozer A (2008) Enhancing accurate data collection in mass fatality kinship identifications: lessons learned from hurricane Katrina. Forensic Sci Int Genet 2:354–362CrossRefGoogle Scholar
  9. 9.
    Holland MM, Fisher DL, Mitchell LG, Rodriquez WC, Canik JJ, Merril CR, Weedn VW (1993) Mitochondrial DNA sequence analysis of human skeletal remains: identification of remains from the Vietnam War. J Forensic Sci 38:542–553CrossRefGoogle Scholar
  10. 10.
    Palo J, Hedman M, Soderholm N, Sajantila A (2007) Repatriation and identification of Finnish World War II soldiers. Croat Med J 48:528–535PubMedPubMedCentralGoogle Scholar
  11. 11.
    Lee HY, Kim NY, Park MJ, Sim JE, Yang WI, Shin KJ (2010) DNA typing for the identification of old skeletal remains from Korean War victims. J Forensic Sci 55:1422–1429.  https://doi.org/10.1111/j.1556-4029.2010.01411.x CrossRefPubMedGoogle Scholar
  12. 12.
    Pajnic IZ, Pogorelc BG, Balazic J (2010) Molecular genetic identification of skeletal remains from the second World War Konfin I mass grave in Slovenia. Int J Legal Med 124:307–317CrossRefGoogle Scholar
  13. 13.
    Leclair B, Fregeau CJ, Bowen KL, Fourney RM (2004) Enhanced kinship analysis and STR-based DNA typing for human identification in mass fatality incidents: the Swissair flight 111 disaster. J Forensic Sci 49:939–953PubMedGoogle Scholar
  14. 14.
    Ludes B, Tracqui A, Pfitzinger H, Kintz P, Levy F, Disteldorf M, Hutt JM, Kaess B, Haag R, Memheld B et al (1994) Medico-legal investigations of the Airbus, A230 crash upon Mount Ste-Odile, France. J Forensic Sci 39:1147–1152CrossRefGoogle Scholar
  15. 15.
    Olaisen B, Stenersen M, Mevag B (1997) Identification by DNA analysis of the victims of the August 1996 Spitsbergen civil aircraft disaster. Nat Genet 15:402–405CrossRefGoogle Scholar
  16. 16.
    Huffine E, Crews J, Kennedy B, Bomberger K, Zinbo A (2001) Mass identification of persons missing from the break-up of the former Yugoslavia: structure, function, and role of the international commission on missing persons. Croat Med J 42:271–275PubMedGoogle Scholar
  17. 17.
    Ambers A, Gill-King H, Dirkmaat D, Benjamin R, King J, Budowle B (2014) Autosomal and Y-STR analysis of degraded DNA from the 120-year-old skeletal remains of Ezekiel harper. Forensicic Sci Int Genet 9:33–41CrossRefGoogle Scholar
  18. 18.
    Ambers AD, Churchill JD, King JL, Stoljarova M, Gill-King H, Assidi M, Abu-Emalgd M, Buhmeida A, Al-Qahtani M, Budowle B (2016) More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel DNA sequencing. BMC Genomics 17:750.  https://doi.org/10.1186/s12864-016-3087-2 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Vanek D, Saskova L, Koch H (2002) Kinship and Y-chromosome analysis of 7th century human remains: novel DNA extraction and typing procedure for ancient material. Croatian. Med J 50:286–295Google Scholar
  20. 20.
    Coble MD, Loreille OM, Wadhams MJ, Edson SM, Maynard K, Meyer CE, Niederstatter H, Berger C, Berger B, Falsetti AB, Gill P, Parson W, Finelli LN (2009) Mystery solved: the identification of the two missing Romanov children using DNA analysis. PLoS One 4:e4838.  https://doi.org/10.1371/journal.pone.0004838 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gill P, Ivanov PL, Kimpton C, Piercy R, Benson N, Tully G, Evett I, Hagelberg E, Sullivan K (1994) Identification of the remains of the Romanov family by DNA analysis. Nat Genet 6:130–136CrossRefGoogle Scholar
  22. 22.
    Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ (1996) Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of the Tsar Nicholas II. Nat Genet 12:417–420CrossRefGoogle Scholar
  23. 23.
    Ge J, Budowle B, Chakraborty R (2011) Choosing relatives for DNA identification of missing persons. J Forensic Sci 56:S23–S28CrossRefGoogle Scholar
  24. 24.
    Prinz M, Carracedo A, Mayr WR, Morling N, Parsons TJ, Sajantila A, Scheithauer R, Scmitter H, Schneider PM (2007) DNA Commission of the International Society for forensic genetics (ISFG): recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensicic Sci Int Genet 1:3–12CrossRefGoogle Scholar
  25. 25.
    Zietkiewicz E, Witt M, Daca P, Zebracka-Gala J, Goniewicz M, Jarzab B, Witt M (2012) Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet 53:41−60CrossRefGoogle Scholar
  26. 26.
    Kayser M, de Kniff P (2011) Improving human forensics through advances in genetics, genomics, and molecular biology. Nat Rev Genet 12:179–192CrossRefGoogle Scholar
  27. 27.
    Jobling MA, Gill P (2004) Encoding evidence: DNA in forensic analysis. Nat Rev Genet 5:739–752CrossRefGoogle Scholar
  28. 28.
    Decorte R (2010) Genetic identification in the 21st century—current status and future developments. Forensicic Sci Int Genet 201:160–164CrossRefGoogle Scholar
  29. 29.
    Irwin JA, Edson SM, Loreille O, Just RS, Barritt SM, Lee DA, Holland TD, Parsons TJ, Leney MD (2007) DNA identification of “earthquake McGoon” 50 years postmortem. J Forensic Sci 52:1115–1118CrossRefGoogle Scholar
  30. 30.
    Roewer L (2009) Y chromosome STR typing in crime casework. Forensicic Sci Med Pathol 5:77–84CrossRefGoogle Scholar
  31. 31.
    Gill P, Brenner C, Brinkman B, Budowle B, Carracedo A, Jobling MA, de Kniff P, Kayser M, Krawczak M, Mayr W, Morling N, Olaisen B, Pascali V, Prinz M, Roewer L, Schneider PM, Sajantila A, Tyler-Smith C (2001) DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y-chromosome STRs. Forensic Sci Int 124:5–10CrossRefGoogle Scholar
  32. 32.
    Corach D, Risso LF, Marino M, Penacino G, Sala A (2001) Routine Y-STR typing in forensic casework. Forensic Sci Int 118:131–135CrossRefGoogle Scholar
  33. 33.
    Scientific Working Group on DNA Analysis Methods (SWGDAM), Interpretation guidelines for Y-chromosome STR typing, https://www.swgdam.org/publications
  34. 34.
    Lim SK, Xue Y, Parkin EJ, Tyler-Smith C (2007) Variation of 52 new Y-STR loci in the Y chromosome consortium worldwide panel of 76 diverse individuals. Int J Legal Med 121:124–127CrossRefGoogle Scholar
  35. 35.
    Vermeulen M, Wollstein A, van der Gaag K, Lao O, Xue Y, Wang Q, Roewer L, Knoblauch H, Tyler-Smith C, de Kniff P, Kayser M (2009) Improving global and regional resolution of male lineage differentiation by simple single-copy Y-chromosomal short tandem repeat polymorphisms. Forensicic Sci Int Genet 3:205–213CrossRefGoogle Scholar
  36. 36.
    Geppert M, Edelmann J, Lessig R (2009) The Y-chromosomal STRs DYS481, DYS570, DYS576 and DYS643. Legal Med 11:S109–S110CrossRefGoogle Scholar
  37. 37.
    Rodig H, Roewer L, Gross A, Richter T, de Kniff P, Kayser M, Brabetz W (2008) Evaluation of haplotype discrimination capacity of 35 Y-chromosomal short tandem repeat loci. Forensic Sci Int 174:182–188CrossRefGoogle Scholar
  38. 38.
    Kayser M, Kittler R, Erler A, Hedman M, Lee AC, Mohyuddin A, Qasim Mehdi S, Rosser Z, Stoneking M, Jobling MA, Sajantila A, Tyler-Smith C (2004) A comprehensive survey of human Y-chromosomal microsatellites. Am J Hum Genet 74:1183–1197CrossRefGoogle Scholar
  39. 39.
    D'Amato ME, Ehrenreich L, Cloete K, Benjeddou M, Davison S (2010) Characterization of the highly discriminatory loci DYS449, DYS481, DYS518, DYS612, DYS626, DYS644 and DYS710. Forensic Sci Int Genet 4:104–110CrossRefGoogle Scholar
  40. 40.
    Yfiler™ Plus PCR amplification kit user guide, Publication number 4485610 Revision C, https://tools.thermofisher.com/content/sfs/manuals/4485610_YfilerPlus_UG.pdf
  41. 41.
    Gopinath S, Zhong C, Nguyen V, Ge J, Lagace RE, Short ML, Mulero JJ (2016) Developmental validation of the Yfiler® Plus PCR amplification kit: an enhanced Y-STR multiplex for casework and database applications. Forensic Sci Int Genet 24:164–175CrossRefGoogle Scholar
  42. 42.
    Rapone C, D’Atanasio E, Agostino A, Mariano M, Papaluca MT, Cruciani F, Berti A (2016) Forensic genetic value of a 27 Y-STR loci multiplex (Yfiler® Plus kit) in an Italian population sample. Forensic Sci Int Genet 21:e1–e5CrossRefGoogle Scholar
  43. 43.
    Pickrahn I, Muller E, Zahrer W, Dunkelmann B, Cemper-Kielsslich J, Kreindl G, Neuhuber F (2016) Yfiler® Plus amplification kit validation and calculation of forensic parameters for two Austrian populations. Forensic Sci Int Genet 21:90–94CrossRefGoogle Scholar
  44. 44.
    Ottaviani E, Vernarecci S, Asili P, Agostino A, Montagna P (2015) Preliminary assessment of the prototype Yfiler® Plus kit in a population study of northern Italian males. Int J Legal Med 129:729–730CrossRefGoogle Scholar
  45. 45.
    Olofsson JK, Mogensen HS, Buchard A, Borsting C, Morling N (2015) Forensic and population genetic analyses of Danes, Greenlanders and Somalis typed with the Yfiler® Plus PCR amplification kit. Forensic Sci Int Genet 16:232–236CrossRefGoogle Scholar
  46. 46.
    Ballantyne J, Hanson E, Green R, Holt A, Mulero J (2013) Enhancing the sexual assault workflow: testing of next generation DNA assessment and Y-STR systems. Forensic Sci Int Genet Suppl Ser 4:e228–e229CrossRefGoogle Scholar
  47. 47.
    Votrubova-Dubska J, Vanek D, Zimund J, Mestek O, Urbanova V, Brzobohata H, Brestovansky P (2016) Technical note: efficient removal of a PCR inhibitory agent (vivianite) found on excavated bones. Forensic Sci Int Genet 261:8−13Google Scholar
  48. 48.
    Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 18:1139–1141CrossRefGoogle Scholar
  49. 49.
    Yang DY, Watt K (2005) Contamination controls when preparing archaeological remains for ancient DNA analysis. J Archaeol Sci 32:331–336CrossRefGoogle Scholar
  50. 50.
    Kemp BM, Smith DG (2005) Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Sci Int 154:53–61CrossRefGoogle Scholar
  51. 51.
    Poinar HN (2003) Criteria of authenticity for DNA from ancient and forensic samples. Int Congr Ser 1239:575–579CrossRefGoogle Scholar
  52. 52.
    Gilbert MTP, Hansen AJ, Willerslev E, Turner-Walker G, Collins M (2006) Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA. Int J Osteoarchaeol 16:156–164CrossRefGoogle Scholar
  53. 53.
    Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194CrossRefGoogle Scholar
  54. 54.
    Quantifiler® HP and Trio DNA Quantification Kits User Guide, Applied Biosystems Publication Number 4485354 Revision E, https://tools.thermofisher.com/content/sfs/manuals/4485354.pdf
  55. 55.
    AmpFlSTR® Yfiler™ PCR amplification kit user’s manual, Part number 4358101 Revision C, https://www.thermofisher.com/content/dam/LifeTech/Documents/PDFs/Y-STR/yfiler-users-manual.pdf
  56. 56.
    Bar W, Kratzer A, Machler M, Schmid W (1988) Postmortem stability of DNA. Forensic Sci Int 39:59–70CrossRefGoogle Scholar
  57. 57.
    Alvarez Garcia A, Munoz I, Pestoni C, Lareu MV, Rodriguez-Calvo MS, Carracedo A (1996) Effect of environmental factors on PCR DNA analysis from dental pulp. Int J Legal Med 109:125–129CrossRefGoogle Scholar
  58. 58.
    Pfeiffer H, Huhne J, Seitz B, Brinkmann B (1999) Influence of soil storage and exposure period on DNA recovery from teeth. Int J Legal Med 112:142–144CrossRefGoogle Scholar
  59. 59.
    Whitaker JP, Clayton TM, Urquhart AJ, Millican ES, Downes TJ, Kimpton CP, Gill P (1995) Short tandem repeat typing of bodies from a mass disaster: high success rate and characteristic amplification patterns in highly degraded samples. BioTechniques 18:670–677PubMedGoogle Scholar
  60. 60.
    Schneider PM, Bender K, Mayr WR, Parson W, Hoste B, Decorte R, Cordonnier J, Vanek D, Morling N, Karjalainen M, Marie-Paule Carlotti C, Sabatier M, Hohoff C, Schmitter H, Pflug W, Wenzel R, Patzelt D, Lessig R, Dobrowolski P, O'Donnell G, Garafano L, Dobosz M, de Knijff P, Mevag B, Pawlowski R, Gusmão L, Conceicao Vide M, Alonso Alonso A, García Fernández O, Sanz Nicolás P, Kihlgreen A, Bär W, Meier V, Teyssier A, Coquoz R, Brandt C, Germann U, Gill P, Hallett J, Greenhalgh M (2004) STR analysis of artificially degraded DNA—results of a collaborative European exercise. Forensic Sci Int 139:123–134CrossRefGoogle Scholar
  61. 61.
    Ballantyne KN, Goedbloed M, Fang R, Schaap O, Lao O, Wollstein A, Choi Y, van Duijn K, Vermeulen M, Brauer S, Decorte R, Poetsch M, von Wurmb-Schwark N, de Knijff P, Labuda D, Vezina H, Knoblauch H, Lessig R, Roewer L, Ploski R, Dobosz T, Henke L, Henke J, Furtado MR, Kayser M (2010) Mutability of Y-chromosomal microsatellites: rates, characteristics, molecular bases, and forensic implications. Am J Hum Genet 87:341–353CrossRefGoogle Scholar
  62. 62.
    Ballantyne KN, Keerl V, Wollstein A, Choi Y, Zuniga SB, Ralf A, Vermeulen M, de Kniff P, Kayser M (2012) A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Sci Int Genet 6:208–218CrossRefGoogle Scholar
  63. 63.
    Ballantyne KN, Ralf A, Aboukhalid R, Achakzai NM, Anjos MJ, Ayub Q, Balažic J, Ballantyne J, Ballard DJ, Berger B, Bobillo C, Bouabdellah M, Burri H, Capal T, Caratti S, Cárdenas J, Cartault F, Carvalho EF, Carvalho M, Cheng B, Coble MD, Comas D, Corach D, D'Amato ME, Davison S, de Knijff P, de Ungria MCA, Decorte R, Dobosz T, Dupuy BM, Elmrghni S, Gliwiński M, Gomes SC, Grol L, Haas C, Hanson E, Henke J, Henke L, Herrera-Rodríguez F, Hill CR, Holmlund G, Honda K, Immel UD, Inokuchi S, Jobling MA, Kaddura M, Kim JS, Kim SH, Kim W, King TE, Klausriegler E, Kling D, Kovačević L, Kovatsi L, Krajewski P, Kravchenko S, Larmuseau MHD, Lee EY, Lessig R, Livshits LA, Marjanović D, Minarik M, Mizuno N, Moreira H, Morling N, Mukherjee M, Munier P, Nagaraju J, Neuhuber F, Nie S, Nilasitsataporn P, Nishi T, Oh HH, Olofsson J, Onofri V, Palo JU, Pamjav H, Parson W, Petlach M, Phillips C, Ploski R, Prasad SPR, Primorac D, Purnomo GA, Purps J, Rangel-Villalobos H, Rębała K, Rerkamnuaychoke B, Gonzalez DR, Robino C, Roewer L, Rosa A, Sajantila A, Sala A, Salvador JM, Sanz P, Schmitt C, Sharma AK, Silva DA, Shin KJ, Sijen T, Sirker M, Siváková D, Škaro V, Solano-Matamoros C, Souto L, Stenzl V, Sudoyo H, Syndercombe-Court D, Tagliabracci A, Taylor D, Tillmar A, Tsybovsky IS, Tyler-Smith C, van der Gaag KJ, Vanek D, Völgyi A, Ward D, Willemse P, Yap EPH, Yong RYY, Pajnič IZ, Kayser M (2014) Toward male individualization with rapidly mutating Y-chromosomal short tandem repeats. Hum Mutat 35:1021–1032CrossRefGoogle Scholar
  64. 64.
    Adnan A, Ralf A, Rakha A, Kousouri N, Kayser M (2016) Improving empirical evidence on differentiating closely related men with RM Y-STRs: a comprehensive pedigree study from Pakistan. Forensic Sci Int Genet 25:45–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Human IdentificationUniversity of North Texas Health Science CenterFort WorthUSA
  2. 2.Forensic DNA ServicePragueCzech Republic
  3. 3.2nd Faculty of MedicineCharles University in PraguePragueCzech Republic
  4. 4.Institute of Legal MedicineBulovka HospitalPragueCzech Republic
  5. 5.Department of Forensic MedicineUniversity of HelsinkiHelsinkiFinland
  6. 6.Center of Excellence in Genomic Medicine Research (CEGMR)King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations