International Journal of Legal Medicine

, Volume 132, Issue 5, pp 1493–1503 | Cite as

Histomorphological analysis of the variability of the human skeleton: forensic implications

  • Marco CummaudoEmail author
  • Annalisa Cappella
  • Miranda Biraghi
  • Caterina Raffone
  • Nicholas Màrquez-Grant
  • Cristina Cattaneo
Original Article


One of the fundamental questions in forensic medicine and anthropology is whether or not a bone or bone fragment is human. Surprisingly at times for the extreme degradation of the bone (charred, old), DNA cannot be successfully performed and one must turn to other methods. Histological analysis at times can be proposed. However, the variability of a single human skeleton has never been tested. Forty-nine thin sections of long, flat, irregular and short bones were obtained from a well-preserved medieval adult human skeleton. A qualitative histomorphological analysis was performed in order to assess the presence of primary and secondary bone and the presence, absence and orientation of vascular canals. No histological sections exhibited woven or fibro-lamellar bone. Long bones showed a higher variability with an alternation within the same section of areas characterized by tightly packed secondary osteons and areas with scattered secondary osteons immersed in a lamellar matrix. Flat and irregular bones appeared to be characterized by a greater uniformity with scattered osteons in abundant interstitial lamellae. Some cases of “osteon banding” and “drifting osteons” were observed. Although Haversian bone represent the most frequent pattern, a histomorphological variability between different bones of the same individual, in different portions of the same bone, and in different parts of the same section has been observed. Therefore, the present study has highlighted the importance of extending research to whole skeletons without focusing only on single bones, in order to have a better understanding of the histological variability of both human and non-human bone.


Forensic anthropology Bone histology Histomorphological variability Human vs non-human 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Brits D, Steyn M, L'Abbe EN (2014) A histomorphological analysis of human and non-human femora. Int J Legal Med 128(2):369–377. CrossRefPubMedGoogle Scholar
  2. 2.
    Cuijpers AGFM (2006) Histological identification of bone fragments in archaeology: telling humans apart from horses and cattle. Int J Osteoarchaeol 16(6):465–480. CrossRefGoogle Scholar
  3. 3.
    Cuijpers AGFM (2009) Distinguishing between the bone fragments of medium-sized mammals and children. A histological identification method for archaeology. Anthropol Anz 67(2):181–203. CrossRefPubMedGoogle Scholar
  4. 4.
    Hillier ML, Bell LS (2007) Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci 52(2):249–263. CrossRefPubMedGoogle Scholar
  5. 5.
    Locke M (2004) Structure of long bones in mammals. J Morphol 262(2):546–565. CrossRefPubMedGoogle Scholar
  6. 6.
    Mulhern DM, Ubelaker DH (2001) Differences in osteon banding between human and nonhuman bone. J Forensic Sci 46(2):220–222. CrossRefPubMedGoogle Scholar
  7. 7.
    Sawada J, Nara T, Fukui J, Dodo Y, Hirata K (2014) Histomorphological species identification of tiny bone fragments from a paleolithic site in the northern Japanese archipelago. J Archaeol Sci 46:270–280. CrossRefGoogle Scholar
  8. 8.
    Cattaneo C, Porta D, Gibelli D, Gamba C (2009) Histological determination of the human origin of bone fragments. J Forensic Sci 54(3):531–533. CrossRefPubMedGoogle Scholar
  9. 9.
    Crescimanno A, Stout SD (2012) Differentiating fragmented human and nonhuman long bone using osteon circularity. J Forensic Sci 57(2):287–294. CrossRefPubMedGoogle Scholar
  10. 10.
    Dominguez VM, Crowder CM (2012) The utility of osteon shape and circularity for differentiating human and non-human Haversian bone. Am J Phys Anthropol 149(1):84–91. CrossRefPubMedGoogle Scholar
  11. 11.
    Martiniaková M, Grosskopf B, Omelka R, Vondráková M, Bauerová M (2006a) Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci 51(6):1235–1239. CrossRefPubMedGoogle Scholar
  12. 12.
    Martiniaková M, Grosskopf B, Vondráková M, Omelka R, Fabĭs M (2006b) Differences in femoral compact bone tissue microscopic structure between adult cows (Bos taurus) and pigs (Sus scrofa domestics). Anat Histol Embryol 35(3):167–170. CrossRefPubMedGoogle Scholar
  13. 13.
    Martiniaková M, Grosskopf B, Omelka R, Vondráková M, Bauerová M (2007a) Histological analysis of ovine compact bone tissue. J Vet Med Sci 69(4):409–411. CrossRefPubMedGoogle Scholar
  14. 14.
    Martiniaková M, Grosskopf B, Omelka R, Dammers K, Vondráková M, Bauerová M (2007b) Histological study of compact bone tissue in some mammals: a method for species determination. Int J Osteoarchaeol 17(1):82–90. CrossRefGoogle Scholar
  15. 15.
    Havers C (1691) Osteologia nova, or some new observations of the bones. Printed for Samuel Smith, LondonGoogle Scholar
  16. 16.
    Locke M, Dean RL (2003) Vascular spaces in compact bone: a technique to correct a common misinterpretation of structure. Am Biol Teach 65(9):701–707. CrossRefGoogle Scholar
  17. 17.
    Enlow D (1966) An evaluation of the use of bone histology in forensic medicine and anthropology. In: Evans FG (ed) IIIrd International Congress of Anatomists: Symposium on Joints and Bones. Springer Verlag, pp 92–112Google Scholar
  18. 18.
    Francillon-Vieillot H, de Buffrénil V, Castanet J, Géraudie J, Meunier FJ, Sire J, Zylberberg L, de Ricqlès A (1990) Microstructure and mineralization of vertebrate skeletal tissues. In: Carter JG (ed) Skeletal biomineralization: patterns, processes and evolutionary trends. Van Nostrand Reinhold, New York, pp 471–530. CrossRefGoogle Scholar
  19. 19.
    Urbanová P, Novotný V (2005) Distinguishing between human and non-human bones: histometric method for forensic anthropology. l'Anthropologie 43:77–85Google Scholar
  20. 20.
    Zoetis T, Tassinari MS, Bagi C, Walthall K, Hurtt ME (2003) Species comparison of postnatal bone growth and development. Birth Defects Res B 68(2):86–110. CrossRefGoogle Scholar
  21. 21.
    Enlow DH (1962) A study of the post-natal growth and remodeling of bone. Am J Anat 110(2):79–101. CrossRefPubMedGoogle Scholar
  22. 22.
    Streeter M (2011) Histological age-at-death estimation. In: Crowder C, Stout SD (eds) Bone histology: an anthropological perspective. CRC Press, Boca Raton, pp 135–152.
  23. 23.
    Robling AG, Stout SD (1999) Morphology of the drifting osteon. Cells Tissues Organs 164(4):192–204. CrossRefPubMedGoogle Scholar
  24. 24.
    Stout SD, Crowder C (2012) Bone remodeling, histomorphology, and histomorphometry. In: Crowder C, Stout SD (eds) Bone histology: an anthropological perspective. CRC Press, Boca Raton, pp 1–21. CrossRefGoogle Scholar
  25. 25.
    Skedros JG (2011) Interpreting load history in limb-bone diaphyses: important considerations and their biomechanical foundations. In: Crowder C, Stout SD (eds) Bone histology: an anthropological perspective. CRC Press, Boca Raton, pp 153–220.
  26. 26.
    Brogiolo GP, Mariotti V (2009) San Martino di Serravalle e San Bartolomeo De Castelàz. Due chiese di Valtellina: scavi e ricerche. Fondazione Gruppo Credito Valtellinese, Milano.Google Scholar
  27. 27.
    Beauthier JP, Lefèvre P, Meunier M, Orban R, Polet C, Werquin JP, Quatrehomme G (2010) Palatine sutures as an age indicator: a controlled study in elderly. J Forensic Sci 55(1):153–158. CrossRefPubMedGoogle Scholar
  28. 28.
    Brooks S, Suchey J (1990) Skeletal age determination base on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey–Brooks methods. J Hum Evol 5:227–238CrossRefGoogle Scholar
  29. 29.
    Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains: proceedings of a seminar at the field museum of natural history. Arkansas Archaeological Survey Press, FayettevilleGoogle Scholar
  30. 30.
    Iscan MY, Loth SR, Wright RK (1984) Age estimation from the rib by phase analysis: white males. J Forensic Sci 29(4):1094–1104PubMedGoogle Scholar
  31. 31.
    Rougé-Maillart C, Vielle B, Jousset N, Chappard D, Telmon N, Cunha E (2009) Development of a method to estimate skeletal age at death in adults using the acetabulum and the auricular surface on a Portuguese population. Forensic Sci Int 188(1–3):91–95. CrossRefPubMedGoogle Scholar
  32. 32.
    Maat GJR, Van Den Bos RPM, Aarents MJ (2001) Manual preparation of ground sections for the microscopy of natural bone tissue: update and modification of Frost’s “rapid manual method”. Int J Osteoarchaeol 11(5):366–374. CrossRefGoogle Scholar
  33. 33.
    Booth TJ, Madgwick R (2016) New evidence for diverse secondary burial practices in Iron Age Britain: a histological case study. J Archaeol Sci 67:14–24. CrossRefGoogle Scholar
  34. 34.
    Dixon R, Dawson L, Taylor D (2008) The experimental degradation of archaeological human bone by anaerobic bacteria and the implications for recovery of ancient DNA. In: The 9th International Conference on Ancient DNA and Associated Biomolecules, Pompeii, ItalyGoogle Scholar
  35. 35.
    Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31(1):87–95. CrossRefGoogle Scholar
  36. 36.
    Müller K, Chadefaux C, Thomas N, Reiche I (2011) Microbial attack of archaeological bones versus high concentrations of heavy metals in the burial environment. A case study of animal bones from a mediaeval copper workshop in Paris. Palaeogeogr Palaeoclimatol Palaeoecol 310(1–2):39–51. CrossRefGoogle Scholar
  37. 37.
    Hedges REM, Millard AR, Pike AWG (1995) Measurements and relationships of diagenetic alteration of bone from three archaeological sites. J Archaeol Sci 22(2):201–209. CrossRefGoogle Scholar
  38. 38.
    Enlow DH, Brown SO (1956) A comparative histological study of fossil and recent bone tissues, part I. Tex J Sci 7:405–443Google Scholar
  39. 39.
    Crowder C, Stout SD (2011) Bone histology: an anthropological perspective. CRC Press, Boca Raton doi:
  40. 40.
    Currey JD (2012) The structure and mechanics of bone. J Mater Sci 47(1):41–54. CrossRefGoogle Scholar
  41. 41.
    Evans FG, Bang S (1966) Physical and histological differences between human fibular and femoral compact bone. In: Evans FG (ed) Studies on the anatomy and function of bones and joints. Verlag, Berlin, pp 142–155. CrossRefGoogle Scholar
  42. 42.
    Evans FG (1958) Relations between the microscopic structure and tensile strength of human bone. Acta Anat (Basel) 35:285–301. CrossRefGoogle Scholar
  43. 43.
    Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure-function relations. J Struct Biol 126(3):241–255. CrossRefPubMedGoogle Scholar
  44. 44.
    Burton P, Nyssen-Behets C, Dhem A (1989) Haversian bone remodeling in human fetus. Acta Anat (Basel) 135(2):171–175. CrossRefGoogle Scholar
  45. 45.
    Caccia G, Magli F, Tagi VM, Porta DGA, Cummaudo M, Marquez-Grant N, Cattaneo C (2015) Histological determination of the human origin from dry bone: a cautionary note for subadults. Int J Legal Med 130(1):299–307. CrossRefPubMedGoogle Scholar
  46. 46.
    Ahlquist J, Damsten O (1969) A modification of Kerley’s method for the microscopic determination of age in human bone. J Forensic Sci 14(2):205–212Google Scholar
  47. 47.
    Eriksen MF (1991) Histologic estimation of age at death using the anterior cortex of the femur. Amer J Phys Anthropol 84(2):171–179. CrossRefGoogle Scholar
  48. 48.
    Kerley ER (1965) The microscopic determination of age in human bone. Amer J Phys Anthropol 23(2):149–163. CrossRefGoogle Scholar
  49. 49.
    Kerley ER, Ubelaker DH (1978) Revisions in the microscopic method of estimating age at death in human cortical bone. Amer J Phys Anthropol 49(4):545–546. CrossRefGoogle Scholar
  50. 50.
    Maat GJR, Maes A, Aarents MJ, Nagelkerke NJD (2006) Histological age prediction from the femur in a contemporary Dutch sample. J Forensic Sci 51(2):230–237. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LABANOF (Laboratorio di Antropologia e Odontologia Forense) Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoMilanItaly
  2. 2.Cranfield Forensic Institute, Cranfield UniversityDefence Academy of the United KingdomShrivenhamUK

Personalised recommendations