Advertisement

International Journal of Legal Medicine

, Volume 132, Issue 5, pp 1375–1380 | Cite as

Forensic application of epidermal AQP3 expression to determination of wound vitality in human compressed neck skin

  • Yuko Ishida
  • Yumi Kuninaka
  • Mizuho Nosaka
  • Emi Shimada
  • Satoshi Hata
  • Hiroki Yamamoto
  • Yumiko Hashizume
  • Akihiko Kimura
  • Fukumi Furukawa
  • Toshikazu Kondo
Original Article

Abstract

In forensic practices, it is often difficult to determine wound vitality in compression marks of the neck with naked eyes. AQP1 and AQP3 are the major water channels associated with skin. Thus, we immunohistochemically examined the expression of AQP1 and AQP3 in neck skin samples to discuss their forensic applicability to determination of the wound vitality. Skin samples were obtained from 56 neck compression cases (hanging, 35 cases; strangulation, 21 cases). The intact skin from the same individual was taken as a control. Although AQP1 was immnunostained in dermal capillaries in both the neck compression marks and intact skin samples, there was no significant difference in the magnitude of AQP1 expression between both groups. On the contrary, AQP3-positive signals could be faintly detected in uninjured skin samples, and the positive signals seemed more intense in the keratinocytes in compression regions. Morphometrical analyses revealed that the ratio of AQP3-expressed keratinocytes was significantly enhanced in neck compression regions, compared with control groups. From the viewpoints of forensic pathology, immunohistochemical detection of AQP3 in the neck skin can be considered a valuable marker to diagnose the trace of antemortem compression.

Keywords

AQP1 AQP3 Compression Immunohistochemistry Forensic pathology 

Notes

Acknowledgments

We thank Ms. Mariko Kawaguchi for her excellent assistance in the preparation of this manuscript.

Funding information

This study was financially supported in part by Grants-in-Aids for Scientific Research (A, 25253055), (B, 15H04798) and (C, 17K09274) from Japan Society for the Promotion of Science.

Supplementary material

414_2018_1780_MOESM1_ESM.pdf (658 kb)
ESM 1 (PDF 658 kb)

References

  1. 1.
    Adelson L (1974) Homicide by cervical compression and by drowning “Asphyxial Deaths”. In: The Pathology of Homicide, 1st edn. Charles C Thomas, Springfield, pp 521–575Google Scholar
  2. 2.
    Vij K (2001) Asphyxial deaths. In: Textbook of forensic medicine, principles and practice, 1st edn. B.I. Churchill Livingstone, New Delhi, pp 216–295Google Scholar
  3. 3.
    Di Maio DJ, Di Maio Vincent JM (1989) Asphyxia. In: Forensic pathology. Elsevier, New York, pp 207–250Google Scholar
  4. 4.
    Gordon I, Shaphiro HA, Berson SD (1988) Death usually initiated by hypoxic hyposia or anoxic anoxia. In: Forensic medicine—a guide to principles. 3rd edn. Churchill Livingstone, Edinburgh, pp 95–127Google Scholar
  5. 5.
    Advenier AS, de la Grandmaison GL (2014) Traumatic rupture of deep neck structures in hanging: two case reports. Am J Forensic Med Pathol 35(3):189–192.  https://doi.org/10.1097/PAF.0000000000000114 CrossRefPubMedGoogle Scholar
  6. 6.
    Verkman AS, Matthay MA, Song Y (2000) Aquaporin water channels and lung physiology. Am J Physiol Lung Cell Mol Physiol 278(5):L867–L879.  https://doi.org/10.1152/ajplung.2000.278.5.L867 CrossRefPubMedGoogle Scholar
  7. 7.
    King LS, Agre P (2001) Man is not a rodent: aquaporins in the airways. Am J Respir Cell Mol Biol 24(3):221–223.  https://doi.org/10.1165/ajrcmb.24.3.f202 CrossRefPubMedGoogle Scholar
  8. 8.
    Verkman AS (2002) Aquaporin water channels and endothelial cell function. J Anat 200(6):617–627.  https://doi.org/10.1046/j.1469-7580.2002.00058.x CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118(15):3225–3232.  https://doi.org/10.1242/jcs.02519 CrossRefPubMedGoogle Scholar
  10. 10.
    Agre P (2006) The aquaporin water channels. Proc Am Thorac Soc 3(1):5–13.  https://doi.org/10.1513/pats.200510-109JH CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sougrat R, Morand M, Gondran C, Barre P, Gobin R, Bonte F, Dumas M, Verbavatz JM (2002) Functional expression of AQP3 in human skin epidermis and reconstructed epidermis. J Invest Dermatol 118(4):678–685.  https://doi.org/10.1046/j.1523-1747.2002.01710.x CrossRefPubMedGoogle Scholar
  12. 12.
    Hara-Chikuma M, Verkman AS (2005) Aquaporin-3 functions as a glycerol transporter in mammalian skin. Biol Cell 97(7):479–486.  https://doi.org/10.1042/BC20040104 CrossRefPubMedGoogle Scholar
  13. 13.
    Hayashi T, Ishida Y, Mizunuma S, Kimura A, Kondo T (2009) Differential diagnosis between freshwater drowning and saltwater drowning based on intrapulmonary aquaporin-5 expression. Int J Legal Med 123(1):7–13.  https://doi.org/10.1007/s00414-008-0235-5 CrossRefPubMedGoogle Scholar
  14. 14.
    An JL, Ishida Y, Kimura A, Kondo T (2010) Forensic application of intrarenal aquaporin-2 expression for differential diagnosis between freshwater and saltwater drowning. Int J Legal Med 124(2):99–104.  https://doi.org/10.1007/s00414-009-0375-2 CrossRefPubMedGoogle Scholar
  15. 15.
    An JL, Ishida Y, Kimura A, Kondo T (2011) Immunohistochemical examination of intracerebral aquaporin-4 expression and its application for differential diagnosis between freshwater and saltwater drowning. Int J Legal Med 125(1):59–65.  https://doi.org/10.1007/s00414-010-0523-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Opdal SH, Vege A, Stray-Pedersen A, Rognum TO (2010) Aquaporin-4 gene variation and sudden infant death syndrome. Pediatr Res 68(1):48–51.  https://doi.org/10.1203/PDR.0b013e3181df4e7c CrossRefPubMedGoogle Scholar
  17. 17.
    Studer J, Bartsch C, Haas C (2014) Aquaporin-4 polymorphisms and brain/body weight ratio in sudden infant death syndrome (SIDS). Pediatr Res 76(1):41–45.  https://doi.org/10.1038/pr.2014.59 CrossRefPubMedGoogle Scholar
  18. 18.
    Nakahigashi K, Kabashima K, Ikoma A, Verkman AS, Miyachi Y, Hara-Chikuma M (2011) Upregulation of aquaporin-3 is involved in keratinocyte proliferation and epidermal hyperplasia. J Invest Dermatol 131(4):865–873.  https://doi.org/10.1038/jid.2010.395 CrossRefPubMedGoogle Scholar
  19. 19.
    Voss KE, Bollag RJ, Fussell N, By C, Sheehan DJ, Bollag WB (2011) Abnormal aquaporin-3 protein expression in hyperproliferative skin disorders. Arch Dermatol Res 303(8):591–600.  https://doi.org/10.1007/s00403-011-1136-x CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kubo H, Hayashi T, Ago K, Ago M, Kanekura T, Ogata M (2014) Forensic diagnosis of ante- and postmortem burn based on aquaporin-3 gene expression in the skin. Leg Med (Tokyo) 16(3):128–134.  https://doi.org/10.1016/j.legalmed.2014.01.008 CrossRefGoogle Scholar
  21. 21.
    Mobasheri A, Marples D (2004) Expression of the AQP-water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 286(3):C529–C537.  https://doi.org/10.1152/ajpcell.00408.2003 CrossRefPubMedGoogle Scholar
  22. 22.
    Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434(7034):786–792.  https://doi.org/10.1038/nature03460 CrossRefPubMedGoogle Scholar
  23. 23.
    Hara-Chikuma M, Verkman AS (2008) Roles of aquaporin-3 in the epidermis. J Invest Dermatol 128(9):2145–2151.  https://doi.org/10.1038/jid.2008.70
  24. 24.
    Boury-Jamot M, Daraspe J, Bonte F, Perrier E, Schnebert S, Dumas M, Verbavatz JM (2009) Skin aquaporins: function in hydration, wound healing, and skin epidermis homeostasis. Handb Exp Pharmacol :205–217.  https://doi.org/10.1007/978-3-540-79885-9_10
  25. 25.
    Hara-Chikuma M, Verkman AS (2008) Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med (Berl) 86(2):221–231.  https://doi.org/10.1007/s00109-007-0272-4 CrossRefGoogle Scholar
  26. 26.
    Hara-Chikuma M, Takahashi K, Chikuma S, Verkman AS, Miyachi Y (2009) The expression of differentiation markers in aquaporin-3 deficient epidermis. Arch Dermatol Res 301(3):245–252.  https://doi.org/10.1007/s00403-009-0927-9 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Qin H, Zheng X, Zhong X, Shetty AK, Elias PM, Bollag WB (2011) Aquaporin-3 in keratinocytes and skin: its role and interaction with phospholipase D2. Arch Biochem Biophys 508(2):138–143.  https://doi.org/10.1016/j.abb.2011.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203(1-3):93–98.  https://doi.org/10.1016/j.forsciint.2010.07.004 CrossRefPubMedGoogle Scholar
  29. 29.
    Turillazzi E, Vacchiano G, Luna-Maldonado A, Neri M, Pomara C, Rabozzi R, Riezzo I, Fineschi V (2010) Tryptase, CD15 and IL-15 as reliable markers for the determination of soft and hard ligature marks vitality. Histol Histopathol 25(12):1539–1546.  https://doi.org/10.14670/HH-25.1539 PubMedCrossRefGoogle Scholar
  30. 30.
    Rojek A, Praetorius J, Frokiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70(1):301–327.  https://doi.org/10.1146/annurev.physiol.70.113006.100452 CrossRefPubMedGoogle Scholar
  31. 31.
    Verkman AS (2009) Aquaporins: translating bench research to human disease. J Exp Biol 212(11):1707–1715.  https://doi.org/10.1242/jeb.024125 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Papadopoulos MC, Saadoun S, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456(4):693–700.  https://doi.org/10.1007/s00424-007-0357-5 CrossRefPubMedGoogle Scholar
  33. 33.
    Hu J, Verkman AS (2006) Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J 20(11):1892–1894.  https://doi.org/10.1096/fj.06-5930fje CrossRefPubMedGoogle Scholar
  34. 34.
    Hara-Chikuma M, Verkman AS (2006) Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule. J Am Soc Nephrol 17(1):39–45.  https://doi.org/10.1681/ASN.2005080846 CrossRefPubMedGoogle Scholar
  35. 35.
    Hayashi S, Takahashi N, Kurata N, Yamaguchi A, Matsui H, Kato S, Takeuchi K (2009) Involvement of aquaporin-1 in gastric epithelial cell migration during wound repair. Biochem Biophys Res Commun 386(3):483–487.  https://doi.org/10.1016/j.bbrc.2009.06.067 CrossRefPubMedGoogle Scholar
  36. 36.
    Ma T, Frigeri A, Hasegawa H, Verkman AS (1994) Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem 269(34):21845–21849PubMedGoogle Scholar
  37. 37.
    Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T et al (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91(14):6269–6273.  https://doi.org/10.1073/pnas.91.14.6269 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Echevarria M, Windhager EE, Tate SS, Frindt G (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A 91(23):10997–11001.  https://doi.org/10.1073/pnas.91.23.10997 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97(8):4386–4391.  https://doi.org/10.1073/pnas.080499597 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ma T, Hara M, Sougrat R, Verbavatz JM, Verkman AS (2002) Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem 277(19):17147–17153.  https://doi.org/10.1074/jbc.M200925200 CrossRefPubMedGoogle Scholar
  41. 41.
    Frigeri A, Gropper MA, Umenishi F, Kawashima M, Brown D, Verkman AS (1995) Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci 108(Pt 9):2993–3002PubMedGoogle Scholar
  42. 42.
    Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Takata K (1999) Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. J Histochem Cytochem 47(10):1275–1286.  https://doi.org/10.1177/002215549904701007 CrossRefPubMedGoogle Scholar
  43. 43.
    Sougrat R, Morand M, Gondran C, Bonte F, Dumas M, Verbavatz JM (2000) Functional expression of AQP3 in human skin epidermis and keratinocyte cell cultures. In: Hohmann S, Nielsen S (eds) Molecular biology and physiology of water and solute transport. Kluwer Academic/Plenum Publishers, New York, pp 179–183.  https://doi.org/10.1007/978-1-4615-1203-5_25 CrossRefGoogle Scholar
  44. 44.
    Imakado S, Bickenbach JR, Bundman DS, Rothnagel JA, Attar PS, Wang XJ, Walczak VR, Wisniewski S, Pote J, Gordon JS et al (1995) Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function. Genes Dev 9(3):317–329.  https://doi.org/10.1101/gad.9.3.317 CrossRefPubMedGoogle Scholar
  45. 45.
    Proksch E, Folster-Holst R, Jensen JM (2006) Skin barrier function, epidermal proliferation and differentiation in eczema. J Dermatol Sci 43(3):159–169.  https://doi.org/10.1016/j.jdermsci.2006.06.003 CrossRefPubMedGoogle Scholar
  46. 46.
    Verdier-Sevrain S, Bonte F (2007) Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol 6(2):75–82.  https://doi.org/10.1111/j.1473-2165.2007.00300.x CrossRefPubMedGoogle Scholar
  47. 47.
    Cao C, Wan S, Jiang Q, Amaral A, Lu S, Hu G, Bi Z, Kouttab N, Chu W, Wan Y (2008) All-trans retinoic acid attenuates ultraviolet radiation-induced down-regulation of aquaporin-3 and water permeability in human keratinocytes. J Cell Physiol 215(2):506–516.  https://doi.org/10.1002/jcp.21336 CrossRefPubMedGoogle Scholar
  48. 48.
    Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2004) Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118(6):320–325.  https://doi.org/10.1007/s00414-004-0468-x CrossRefPubMedGoogle Scholar
  49. 49.
    Kondo T, Tanaka J, Ishida Y, Mori R, Takayasu T, Ohshima T (2002) Ubiquitin expression in skin wounds and its application to forensic wound age determination. Int J Legal Med 116(5):267–272.  https://doi.org/10.1007/s00414-002-0322-y PubMedCrossRefGoogle Scholar
  50. 50.
    Kondo T, Ohshima T, Mori R, Guan DW, Ohshima K, Eisenmenger W (2002) Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination. Int J Legal Med 116(2):87–91.  https://doi.org/10.1007/s004140100260 CrossRefPubMedGoogle Scholar
  51. 51.
    Kondo T, Ohshima T, Eisenmenger W (1999) Immunohistochemical and morphometrical study on the temporal expression of interleukin-1α (IL-1α) in human skin wounds for forensic wound age determination. Int J Legal Med 112(4):249–252.  https://doi.org/10.1007/s004140050244 CrossRefPubMedGoogle Scholar
  52. 52.
    An JL, Ishida Y, Kimura A, Tsokos M, Kondo T (2009) Immunohistochemical detection of CCR2 and CX3CR1 in sepsis-induced lung injury. Forensic Sci Int 192(1-3):e21–e25.  https://doi.org/10.1016/j.forsciint.2009.08.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuko Ishida
    • 1
  • Yumi Kuninaka
    • 1
  • Mizuho Nosaka
    • 1
  • Emi Shimada
    • 1
  • Satoshi Hata
    • 1
  • Hiroki Yamamoto
    • 1
  • Yumiko Hashizume
    • 1
  • Akihiko Kimura
    • 1
  • Fukumi Furukawa
    • 1
    • 2
  • Toshikazu Kondo
    • 1
  1. 1.Department of Forensic MedicineWakayama Medical UniversityWakayamaJapan
  2. 2.Takatsuki Red Cross Hospital, JapanTakatsukiJapan

Personalised recommendations