International Journal of Legal Medicine

, Volume 132, Issue 1, pp 83–90 | Cite as

Improving body fluid identification in forensic trace evidence—construction of an immunochromatographic test array to rapidly detect up to five body fluids simultaneously

  • Hannah HoltkötterEmail author
  • Kristina Schwender
  • Peter Wiegand
  • Heidi Peiffer
  • Marielle Vennemann
Original Article


Body fluid identification is a substantial part of forensic trace analyses. The correct determination of the origin of a biological stain may give valuable information regarding the circumstances of a crime. A simple way to detect a body fluid in a stain is the use of immunochromatographic strip tests. They are easy to use, user-independent, quick, and cheap. Currently, however, it is only possible to analyze one body fluid at a time, requiring the analyst to make previous, possibly subjective, assumptions on the body fluid at hand. Also, identification of mixed body fluids requires the use of several tests, which results in additional sample and time consumption. To combine a simple approach with the possibility to simultaneously detect several body fluids, we constructed a combined immunochromatographic strip test array based on commercially available tests. The array rapidly detects up to five body fluids with a single analysis, and allowing for subsequent DNA extraction from the same material. With this test it was possible to identify the components of a mixture, the test was easily incorporated into standard laboratory work, and its sensitivity and specificity were shown to be comparable to those of conventional strip tests.


Body fluid identification Immunochromatographic assay 



We thank all donors for their participation in this project. We also thank Kristina Schulze Johann, Sabrina Banken, Marianne Schürenkamp, and Ulla Sibbing for supporting this project.

Compliance with ethical standards

Body fluid samples were collected with informed consent using procedures approved by the local ethical committee (Ethik-Kommission der Ärztekammer Westfalen-Lippe und der Westfälischen Wilhelms-Universität Münster).

Supplementary material

414_2017_1724_MOESM1_ESM.pdf (2.8 mb)
ESM 1 (PDF 2866 kb)
414_2017_1724_MOESM2_ESM.pdf (1.7 mb)
ESM 2 (PDF 1713 kb)


  1. 1.
    An JH, Shin KJ, Yang WI, Lee HY (2012) Body fluid identification in forensics. BMB RepGoogle Scholar
  2. 2.
    Tobe SS, Watson N, Nic Daéid N (2007) Evaluation of six presumptive tests for blood, their specificity, sensitivity, and effect on high molecular-weight DNA. J Forensic Sci 52:102–109. CrossRefPubMedGoogle Scholar
  3. 3.
    Holtkötter H, Dierig L, Schürenkamp M, Sibbing U, Pfeiffer H, Vennemann M (2014) Validation of an immunochromatographic D-dimer test to presumptively identify menstrual fluid in forensic exhibits. Int J Legal Med 129:37–41CrossRefPubMedGoogle Scholar
  4. 4.
    Baker DJ, Grimes EA, Hopwood AJ (2011) D-dimer assays for the identification of menstrual blood. Forensic Sci Int 212:210–214. CrossRefPubMedGoogle Scholar
  5. 5.
    Sikirzhytski V, Virkler K, Lednev IK (2010) Discriminant analysis of Raman spectra for body fluid identification for forensic purposes. Sensors (Basel) 10:2869–2884. CrossRefGoogle Scholar
  6. 6.
    Muro CK, Doty KC, de Souza Fernandes L, Lednev IK (2016) Forensic body fluid identification and differentiation by Raman spectroscopy. Forensic Chem 1:31–38. CrossRefGoogle Scholar
  7. 7.
    Zapata F, Gregorio I, Garcia-Ruiz C (2016) Body fluids and spectroscopic techniques in forensics: a perfect match? J Forensic Med 1:1–7. CrossRefGoogle Scholar
  8. 8.
    Durnell Schuiling K, Likis FE (2013) Women’s gynecologic health. 2nd ed. Jones and Bartlett Publishers, IncGoogle Scholar
  9. 9.
    Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17. CrossRefPubMedGoogle Scholar
  10. 10.
    Haas C, Hanson E, Anjos MJ, Ballantyne KN, Banemann R, Bhoelai B, Borges E, Carvalho M, Courts C, De Cock G, Drobnic K, Dötsch M, Fleming R, Franchi C, Gomes I, Hadzic G, Harbison SA, Harteveld J, Hjort B, Hollard C, Hoff-Olsen P, Hüls C, Keyser C, Maroñas O, McCallum N, Moore D, Morling N, Niederstätter H, Noël F, Parson W, Phillips C, Popielarz C, Roeder AD, Salvaderi L, Sauer E, Schneider PM, Shanthan G, Court DS, Turanská M, van Oorschot RAH, Vennemann M, Vidaki A, Zatkalíková L, Ballantyne J (2014) RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: results of a fourth and fifth collaborative EDNAP exercise. Forensic Sci Int Genet 8:203–212. CrossRefPubMedGoogle Scholar
  11. 11.
    van den Berge M, Carracedo A, Gomes I, Graham EAM, Haas C, Hjort B, Hoff-Olsen P, Maroñas O, Mevåg B, Morling N, Niederstätter H, Parson W, Schneider PM, Court DS, Vidaki A, Sijen T (2014) A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of {DNA} and {RNA} results. Forensic Sci Int Genet 10:40–48. CrossRefPubMedGoogle Scholar
  12. 12.
    Juusola J, Ballantyne J (2003) Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int 135:85–96. CrossRefPubMedGoogle Scholar
  13. 13.
    Nussbaumer C, Gharehbaghi-Schnell E, Korschineck I (2006) Messenger RNA profiling: a novel method for body fluid identification by real-time PCR. Forensic Sci Int 157:181–186. CrossRefPubMedGoogle Scholar
  14. 14.
    Richard MLL, Harper KA, Craig RL, Onorato AJ, Robertson JM, Donfack J (2012) Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis. Forensic Sci Int Genet 6:452–460. CrossRefPubMedGoogle Scholar
  15. 15.
    Rekker K, Saare M, Roost AM, Salumets A, Peters M (2013) Circulating microRNA profile throughout the menstrual cycle. PLoS One 8:e81166. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ohlsson Teague EMC, Print CG, Hull ML (2010) The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 16:142–165. CrossRefGoogle Scholar
  17. 17.
    Park J-L, Kwon O-H, Kim JH, Yoo H-S, Lee H-C, Woo K-M, Kim S-Y, Lee S-H, Kim YS (2014) Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Sci Int Genet 13:147–153. CrossRefPubMedGoogle Scholar
  18. 18.
    Illingworth R, Kerr A, DeSousa D, Jørgensen H, Ellis P, Stalker J, Jackson D, Clee C, Plumb R, Rogers J, Humphray S, Cox T, Langford C, Bird A (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6:e22. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Forat S, Huettel B, Reinhardt R, Fimmers R, Haidl G, Denschlag D, Olek K (2016) Methylation markers for the identification of body fluids and tissues from forensic trace evidence. PLoS One 11:e0147973. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    An JH, Choi A, Shin K-J, Yang WI, Lee HY (2013) DNA methylation-specific multiplex assays for body fluid identification. Int J Legal Med 127:35–43. CrossRefPubMedGoogle Scholar
  21. 21.
    Frumkin D, Wasserstrom A, Budowle B, Davidson A (2011) DNA methylation-based forensic tissue identification. Forensic Sci Int Genet 5:517–524. CrossRefPubMedGoogle Scholar
  22. 22.
    Holtkötter H, Beyer V, Schwender K, Glaub A, Johann KS, Schürenkamp M, Sibbing U, Banken S, Wiegand P, Pfeiffer H, Dennany L, Vennemann M, EUROFORGEN-NoE Consortium (2017) Independent validation of body fluid-specific CpG markers and construction of a robust multiplex assay. Forensic Sci Int Genet.
  23. 23.
    Harbison S, Fleming R (2016) Forensic body fluid identification: state of the art. Res Reports Forensic Med Sci 6:11. CrossRefGoogle Scholar
  24. 24.
    Turrina S, Filippini G, Atzei R, Zaglia E, De Leo D (2008) Validation studies of rapid stain identification-blood (RSID-blood) kit in forensic caseworks. Forensic Sci Int Genet Suppl Ser 1:74–75. CrossRefGoogle Scholar
  25. 25.
    SERATEC®, SERATEC® PMB user instruction (2017) 1–2.
  26. 26.
    SERATEC®, SERATEC HemDirect (2013)Google Scholar
  27. 27.
    Old JB, Schweers BA, Boonlayangoor PW, Reich KA (2009) Developmental validation of RSID™-Saliva: a lateral flow immunochromatographic strip test for the forensic detection of saliva. J Forensic Sci 54:866–873. CrossRefPubMedGoogle Scholar
  28. 28.
    SERATEC®, SERATEC α-Amylase test (2013)Google Scholar
  29. 29.
    Independent Forensics, Developmental validation of RSID-urine, n.d.
  30. 30.
    Old J, Schweers BA, Boonlayangoor PW, Fischer B, Miller KWP, Reich K (2012) Developmental validation of RSID™-semen: a lateral flow Immunochromatographic strip test for the forensic detection of human semen*. J Forensic Sci 57:489–499. CrossRefPubMedGoogle Scholar
  31. 31.
    SERATEC®, SERATEC PSA Semiquant (2013).
  32. 32.
    Independent Forensics (n.d.) Rapid stain identification of human saliva (RSID™-Saliva)—technical information and protocol sheet for use with universal buffer, reduced incubation time Cat# 0130. incubSALIVA-Universal Buffer.pdf
  33. 33.
    Independent Forensics (n.d.) Rapid stain identification of urine (RSID™-urine)—technical information and protocol sheet for cat# 0400Google Scholar
  34. 34.
    Independent Forensics (n.d.) Rapid stain identification of human semen (RSID™-Semen)—technical information and protocol sheet for use with universal buffer, reduced incubation time, cat# 0230, 1–2. short incub SEMEN-Univ Buffer.pdf
  35. 35.
    Sato I, Sagi M, Ishiwari A, Nishijima H, Ito E, Mukai T (2002) Use of the “SMITEST” PSA card to identify the presence of prostate-specific antigen in semen and male urine. Forensic Sci Int 127:71–74. CrossRefPubMedGoogle Scholar
  36. 36.
    Hooft PJ, Van De Voorde HP (1990) The zinc test as an alternative for acid phosphatase spot tests in the primary identification of seminal traces. Forensic Sci Int 47:269–275. CrossRefPubMedGoogle Scholar
  37. 37.
    Schmidt S, Franke M, Lehmann J, Loch T, Stöckle M, Weichert-Jacobsen K (2001) Prostate-specific antigen in female urine: a prospective study involving 217 women. Urology 57:717–720. CrossRefPubMedGoogle Scholar
  38. 38.
    Holtkötter H, Rodrigues Filho C, Schwender K, Stadler C, Vennemann M, Pacheco AC, Roca MG (2017) Forensic differentiation between peripheral and menstrual blood in cases of alleged sexual assault—validating an immunochromatographic multiplex assay for simultaneous detection of human hemoglobin and D-dimer. Int J Leg MedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Hannah Holtkötter
    • 1
    Email author
  • Kristina Schwender
    • 1
  • Peter Wiegand
    • 2
  • Heidi Peiffer
    • 1
  • Marielle Vennemann
    • 1
  1. 1.Institute of Legal MedicineUniversity of MünsterMünsterGermany
  2. 2.Institute of Legal MedicineUniversity of UlmUlmGermany

Personalised recommendations