International Journal of Legal Medicine

, Volume 132, Issue 1, pp 219–227 | Cite as

Characterization of bone diagenesis by histology in forensic contexts: a human taphonomic study

  • Yann DelannoyEmail author
  • Thomas Colard
  • Catherine Cannet
  • Vadim Mesli
  • Valéry Hédouin
  • Guillaume Penel
  • Bertrand Ludes
Original Article


The diagenesis of a bone in the postmortem period causes an identifiable deterioration in histology. This degradation is characterized by a collagenous alteration, which can be observed very early. In order to develop a method for determining a postmortem interval for medico-legal use, two ribs collected from six human bodies were studied prospectively over 2 years. Each bone was studied after staining with Sirius red to demonstrate the degradation of collagen as a function of time. This study demonstrated a time-based bone alteration characterized by the architectural degradation of the lamellar bone, without any microbial influence in this postmortem period. The staining was carried out by using Sirius red and correlated this alteration with a collagenic degradation by chemical hydrolysis owing to the affinity of this dye to the amino acids lysine, hydroxylysine, and arginine. Our work asserts that human bone samples that were studied in a controlled environment and analyzed for 24 months underwent a diagenetic trajectory whose main element was collagen hydrolysis.


Forensic medicine Anthropolgy Bone diagenesis Collagen hydrolysis 



We would like to express our sincere appreciation to American Journal Experts, Guillaume Falgayrac and Claire Louria, for their technical and scientific assistance with the preparation of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hedges RE, Millard AR (1995) Bones and groundwater: towards the modelling of diagenetic processes. J Archaeol Sci 22:155–164. CrossRefGoogle Scholar
  2. 2.
    Nielsen-Marsh CM, Hedges RE (2000) Patterns of diagenesis in bone I: the effects of site environments. J Archaeol Sci 27:1139–1150. CrossRefGoogle Scholar
  3. 3.
    Hackett CJ (1981) Microscopical focal destruction (tunnels) in exhumed human bones. Med Sci Law 21:243–265CrossRefPubMedGoogle Scholar
  4. 4.
    Garland AN (1985) A histological study of archaeological bone decomposition. In: Boddington A, Garland AN, Janaway RC (eds) Death, decay and reconstruction. Manchester University Press, Manchester, pp 109–126Google Scholar
  5. 5.
    Bell LS (1990) Palaeopathology and diagenesis: an SEM evaluation of structural changes using backscattered electron imaging. J Archaeol Sci 17:85–102. CrossRefGoogle Scholar
  6. 6.
    Garland AN, Janaway RC, Roberts CA (1988) A study of the decay processes of human skeletal remains from the parish church of the Holy Trinity, Rothwell, Northamptonshire. Oxf J Archaeol 7:235–249. CrossRefGoogle Scholar
  7. 7.
    Jans MME, Kars H, Nielsen–Marsh CM, Smith CI, Nord AG, Arthur P, Earl N (2002) In situ preservation of archaeological bone: a histological study within a multidisciplinary approach. Archaeometry 44:343–352. CrossRefGoogle Scholar
  8. 8.
    Warner SE, Shea JE, Miller SC, Shaw JM (2006) Adaptations in cortical and trabecular bone in response to mechanical loading with and without weight bearing. Calcif Tissue Int 79:395–403. CrossRefPubMedGoogle Scholar
  9. 9.
    Ducher G, Tournaire N, Meddahi-Pellé A, Benhamou CL, Courteix D (2006) Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius. J Bone Miner Metab 24:484–490. CrossRefPubMedGoogle Scholar
  10. 10.
    Michalsky M, Norrissuarez K, Bettica P, Pecile A, Moro L (1993) Rat cortical and trabecular bone collagen glycosylation are differently influenced by ovariectomy. Biochem Biophys Res Commun 192:1281–1288. CrossRefPubMedGoogle Scholar
  11. 11.
    Morko J, Kiviranta R, Hurme S, Rantakokko J, Vuorio E (2005) Differential turnover of cortical and trabecular bone in transgenic mice overexpressing cathepsin K. Bone 36:854–865. CrossRefPubMedGoogle Scholar
  12. 12.
    Delannoy Y, Colard T, Le Garff E, Mesli V, Aubernon C, Penel G, Hedouin V, Gosset D (2016) Effects of the environment on bone mass: a human taphonomic study. Legal Med 20:61–67. CrossRefPubMedGoogle Scholar
  13. 13.
    Kunos CA, Simpson SW, Russell KF, Hershkovitz I (1999) First rib metamorphosis: its possible utility for human age-at-death estimation. Am J Phys Anthropol 110:303–323.<303::AID-AJPA4>3.0.CO;2-O CrossRefPubMedGoogle Scholar
  14. 14.
    Işcan MY, Loth SR, Wright RK (1984) Metamorphosis at the sternal rib end: a new method to estimate age at death in white males. Am J Phys Anthropol 65:147–156. CrossRefPubMedGoogle Scholar
  15. 15.
    King CL, Tayles N, Gordon KC (2011) Re-examining the chemical evaluation of diagenesis in human bone apatite. J Archaeol Sci 38:2222–2230. CrossRefGoogle Scholar
  16. 16.
    Adlam RE, Simmons T (2007) The effect of repeated physical disturbance on soft tissue decomposition—are taphonomic studies an accurate reflection of decomposition? J Forensic Sci 52:1007–1014. CrossRefPubMedGoogle Scholar
  17. 17.
    Kristensen HK (1948) An improved method of decalcification. Stain Technol 23:151–154. CrossRefPubMedGoogle Scholar
  18. 18.
    Whittaker P, Kloner RA, Boughner DR, Pickering JG (1994) Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol 89:397–410. CrossRefPubMedGoogle Scholar
  19. 19.
    Stephenson B (2015) A modified Picro-Sirius Red (PSR) staining procedure with polarization microscopy for identifying collagen in archaeological residues. J Archaeol Sci 61:235–243. CrossRefGoogle Scholar
  20. 20.
    Junqueira LCU, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11:447–455. CrossRefPubMedGoogle Scholar
  21. 21.
    Bromage TG, Goldman HM, McFarlin SC, Warshaw J, Boyde A, Riggs CM (2003) Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat Rec Part B: New Anat 274:157–168. CrossRefGoogle Scholar
  22. 22.
    Berg S (1982) Schätzung der Liegezeit von Skelettmaterial durch histomorphologische Quantifizierung des Kollagenbestandes. Archiv Kriminologie 170:89–98Google Scholar
  23. 23.
    Berg S (1998) Die Datierung von Skelettfunden. In: Leopold D (Hrsg.) Identifikation unbekannter Toter. Schmidt-Römhild, Lübeck, 107–128Google Scholar
  24. 24.
    Wedl C (1864) Ueber einen im Zahnbein und Knochen keimenden Pilz. Sber Akad Wiss Weim K1 50:171–193Google Scholar
  25. 25.
    Bell LS, Elkerton A (2008) Unique marine taphonomy in human skeletal material recovered from the medieval warship Mary Rose. Int J Osteoarchaeol 18:523–535. CrossRefGoogle Scholar
  26. 26.
    Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31:87–95. CrossRefGoogle Scholar
  27. 27.
    Boaks A, Siwek D, Mortazavi F (2014) The temporal degradation of bone collagen: a histochemical approach. Forensic Sci Int 240:104–110. CrossRefPubMedGoogle Scholar
  28. 28.
    Nielsen-Marsh CM, Smith CI, Jans MME, Nord A, Kars H, Collins MJ (2007) Bone diagenesis in the European Holocene II: taphonomic and environmental considerations. J Archaeol Sci 34:1523–1531. CrossRefGoogle Scholar
  29. 29.
    Yoshino M, Kimijima T, Miyasaka S, Sato H, Seta S (1991) Microscopical study on estimation of time since death in skeletal remains. Forensic Sci Int 49:143–158. CrossRefPubMedGoogle Scholar
  30. 30.
    Bell LS, Skinner MF, Jones SJ (1996) The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Sci Int 82:129–140. CrossRefPubMedGoogle Scholar
  31. 31.
    White L, Booth TJ (2014) The origin of bacteria responsible for bioerosion to the internal bone microstructure: results from experimentally-deposited pig carcasses. Forensic Sci Int 239:92–102. CrossRefPubMedGoogle Scholar
  32. 32.
    Child AM (1995) Towards and understanding of the microbial decomposition of archaeological bone in the burial environment. J Archaeol Sci 22:165–174. CrossRefGoogle Scholar
  33. 33.
    Child AM, Gillard RD, Pollard AM (1993) Microbially-induced promotion of amino acid racemization in bone: isolation of the microorganisms and the detection of their enzymes. J Archaeol Sci 20:159–168. CrossRefGoogle Scholar
  34. 34.
    Rodriguez WC, Bass WM (1985) Decomposition of buried bodies and methods that may aid in their location. J Forensic Sci 30:836–852CrossRefPubMedGoogle Scholar
  35. 35.
    Rodriguez WC (1997) Decomposition of buried and submerged bodies. In: HaglundWD SMH (ed) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, pp 459–468Google Scholar
  36. 36.
    Manhein MH (1997) Decomposition rates of deliberate burials: a case study of preservation. In: Haglund WD, Sorg MH (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, pp 469–482Google Scholar
  37. 37.
    Giraud-Guille MM (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42:167–180. CrossRefPubMedGoogle Scholar
  38. 38.
    Peretzschner HU (2006) Collagen gelatinization: the key to understand early bone-diagenesis. Palaeontogr Abt A 278:135–148Google Scholar
  39. 39.
    Rudakova TE, Zaikov GE (1987) Degradation of collagen and its possible applications in medicine. Polym Degrad Stab 18:271–291. CrossRefGoogle Scholar
  40. 40.
    Collins MJ, Riley MS, Child AM, Turner-Walker G (1995) A basic mathematical simulation of the chemical degradation of ancient collagen. J Archaeol Sci 22:175–183. CrossRefGoogle Scholar
  41. 41.
    Turner-Walker G (2011) The mechanical properties of artificially aged bone: probing the nature of the collagen–mineral bond. Palaeogeogr Palaeoclimatol Palaeoecol 310:17–22. CrossRefGoogle Scholar
  42. 42.
    Hedges RE (2002) Bone diagenesis: an overview of processes. Archaeometry 44:319–328. CrossRefGoogle Scholar
  43. 43.
    Turner-Walker G, Nielsen-Marsh CM, Syversen U, Kars H, Collins MJ (2002) Sub-micron spongiform porosity is the major ultra-structural alteration occurring in archaeological bone. Int J Osteoarchaeol 12:407–414. CrossRefGoogle Scholar
  44. 44.
    Smith CI, Nielsen-Marsh CM, Jans MME, Collins MJ (2007) Bone diagenesis in the European Holocene I: patterns and mechanisms. J Archaeol Sci 34:1485–1493. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yann Delannoy
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  • Thomas Colard
    • 2
    • 3
    • 4
  • Catherine Cannet
    • 6
  • Vadim Mesli
    • 2
    • 3
  • Valéry Hédouin
    • 2
    • 3
  • Guillaume Penel
    • 2
    • 4
  • Bertrand Ludes
    • 1
    • 7
  1. 1.Institut Médico-Légal de ParisUniversité Paris Descartes Sorbonne CitéParisFrance
  2. 2.CHU de LILLELilleFrance
  3. 3.EA 7367 Forensic Taphonomy Unit - Lille Forensic InstituteLille UniversityLilleFrance
  4. 4.Littoral Côte d’Opale, EA 4490, PMOI, Physiopathologie des Maladies Osseuses inflammatoiresLille UniversityLilleFrance
  5. 5.Institut de Médecine Légale – CHRU de LilleLille CedexFrance
  6. 6.Laboratoire d’Histomorphométrie de Médecine Légale, Faculté de MédecineStrasbourgFrance
  7. 7.CNRS UMR 5288, AMISToulouse UniversityToulouseFrance

Personalised recommendations