International Journal of Legal Medicine

, Volume 132, Issue 1, pp 13–24 | Cite as

As solid as a rock—comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones

  • Galina KulsteinEmail author
  • Thorsten Hadrys
  • Peter Wiegand
Original Article


Short tandem repeat (STR) typing from skeletal remains can be a difficult task. Dependent on the environmental conditions of the provenance of the bones, DNA can be degraded and STR typing inhibited. Generally, dense and compact bones are known to preserve DNA better. Several studies already proved that femora and teeth have high DNA typing success rates. Unfortunately, these elements are not present in all cases involving skeletal remains. Processing partial or singular skeletal elements, it is favorable to select bone areas where DNA preservation is comparably higher. Especially, cranial bones are often accidentally discovered during criminal investigations. The cranial bone is composed of multiple parts. In this examination, we evaluated the potential of the petrous bone for human identification of skeletal remains in forensic case work. Material from different sections of eight unknown cranial bones and—where available—additionally other skeletal elements, collected at the DNA department of the Institute of Legal Medicine in Ulm, Germany, from 2010 to 2017, were processed with an optimized DNA extraction and STR typing strategy. The results highlight that STR typing from the petrous bones leads to reportable profiles in all individuals, even in cases where the analysis of the parietal bone failed. Moreover, the comparison of capillary electrophorese (CE) typing to massively parallel sequencing (MPS) analysis shows that MPS has the potential to analyze degraded human remains and is even capable to provide additional information about phenotype and ancestry of unknown individuals.


Human identification Skeletal remains STR typing MPS DNA degradation Phenotyping 



We kindly thank our dissector Gabriele Kottmair for the helping hand with the bone preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

414_2017_1653_Fig4_ESM.jpg (137 kb)
ESM 1 (JPEG 137 kb)


  1. 1.
    Wiegand P, Rolf B (2003) Analyse biologischer Spuren Teil II: DNA-Typisierung. Rechtsmedizin 13:375–383. doi: 10.1007/s00194-003-0230-6 CrossRefGoogle Scholar
  2. 2.
    Kemp BM, Smith DG (2005) Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Sci Int 154:53–61. doi: 10.1016/j.forsciint.2004.11.017 CrossRefPubMedGoogle Scholar
  3. 3.
    Keyser-Tracqui C, Ludes B (2005) Methods for the study of ancient DNA. Methods Mol Biol 297:253–264PubMedGoogle Scholar
  4. 4.
    Alaeddini R (2012) Forensic implications of PCR inhibition—a review. Forensic Sci Int Genet 6:297–305. doi: 10.1016/j.fsigen.2011.08.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Zupanič Pajnič I (2016) Extraction of DNA from human skeletal material. In: William Goodwin (ed) Forensic DNA typing protocols, methods in molecular biology, 1420, Springer Science+Business Media, New York, pp 89–108. doi:  10.1007/978-1-4939-3597-0_6
  6. 6.
    Loreille OM, Diegoli TM, Irwin JA, Coble MD, Parsons TJ (2007) High efficiency DNA extraction from bone by total demineralization. Forensic Sci Int Genet 1:191–195. doi: 10.1016/j.fsigen.2007.02.006 CrossRefPubMedGoogle Scholar
  7. 7.
    Jakubowska J, Maciejewska A, Pawlowski R (2012) Comparison of three methods of DNA extraction from human bones with different degrees of degradation. Int J Legal Med 126:173–178. doi: 10.1007/s00414-011-0590-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Amory S, Huel R, Bilic A, Loreille O, Parsons TJ (2012) Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Sci Int Genet 6:398–406. doi: 10.1016/j.fsigen.2011.08.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Lee HY, Park MJ, Kim NY, Sim JE, Yang WI, Shin KJ (2010) Simple and highly effective DNA extraction methods from of skeletal remains using silica columns. Forensic Sci Int Genet 4:275–280. doi: 10.1016/j.fsigen.2009.10.014 CrossRefPubMedGoogle Scholar
  10. 10.
    Rohland N, Hofreiter M (2007) Ancient DNA extraction from bones and teeth. Nat Protoc 2:1756–1762. doi: 10.1038/nprot.2007.247 CrossRefPubMedGoogle Scholar
  11. 11.
    Parsons TJ, Weedn VW (1997) Preservation and recovery of DNA in postmortem specimens and trace samples. In: Haglund WD, Sorg MS (eds) Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, FL, pp 109–138Google Scholar
  12. 12.
    Edson S, Ross JP, Coble MD, Parsons TJ, Barritt SM (2004) Naming the dead—confronting the realities of rapid identification of degraded skeletal remains. Forensic Sci Rev 16:64–89Google Scholar
  13. 13.
    Milos A, Selmanovic A, Smajlovic L, Huel RLM, Katzmarzyk C, Rizvic A, Parsons TJ (2007) Success rates of nuclear short tandem repeat typing from different skeletal elements. Croat Med J 48:486–493PubMedPubMedCentralGoogle Scholar
  14. 14.
    Mundorff AZ, Bartelink EJ, Mar-Cash E (2009) DNA preservation in skeletal elements from the world trade center disaster: recommendations for mass fatality management. J Forensic Sci 54(4):739–745. doi: 10.1111/j.1556-4029.2009.01045.x CrossRefPubMedGoogle Scholar
  15. 15.
    Misner LM, Halvorson AC, Dreier JL, Ubelaker DH, Foran DR (2009) The correlation between skeletal weathering and DNA quality and quantity. J Forensic Sci 54(4):822–828. doi: 10.1111/j.1556-4029.2009.01043.x CrossRefPubMedGoogle Scholar
  16. 16.
    Alt KW, Brandt G, Knipper C, Lehn C (2013) Empfehlungen für die Probenentnahme in der forensischen Anthropologie – Untersuchung von DNA und Stabilisotopen. Rechtsmedizin 24:179–185. doi: 10.1007/s00194-014-0950-9 CrossRefGoogle Scholar
  17. 17.
    Alonso A, Andelinovic S, Martin P, Sutlovic D, Erceg I, Huffine E, de Simón LF, Albarrán C, Definis-Gojanović M, Fernández-Rodriguez A, Carciá P, Drmić I, Rezić B, Kuret S, Sancho M, Primorac D (2001) DNA typing from skeletal remains: evaluation of multiplex and megaplex STR systems on DNA isolated from bone and teeth samples. Croat Med J 42(3):260–266PubMedGoogle Scholar
  18. 18.
    Burger J, Bollongino R (2010) Richtlinien zur Bergung, Entnahme und Archivierung von Skelettproben für palaeogenetische Analysen [Guidelines for the recovery, acquisition and storage of skeletal samples for palaeogenetical analyses]. Bulletin der Schweizerischen Gesellschaft für Anthropologie 16(1–2):71–78Google Scholar
  19. 19.
    Pinhasi R, Fernandes D, Silak K, Novak M, Connell S, Alpaslan-Roodenberg S, Gerritsen F, Moiseyev V, Gromow A, Raczky P, Anders A, Pietrusewsky M, Rollefson G, Jovanovic M, Trinhhoang H, Bar-Oz G, Oxenham M, Matsumara H, Hofreiter M (2015) Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS One 10(6):e0129102. doi: 10.1371/journal.pone.0129102 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gamba C, Jones ER, Teasdale MD, Mclaughlin RL, Gonzales-Fortes G, Mattiangeli V, Domboróczki L, Kóvári I, Pap I, Anders A, Whittle A, Dani J, Raczky P, Higham TFG, Hofreiter M, Bradley DG, Pinhasi R (2014) Genome flux and stasis in a five millennium transect of European prehistory, Nat Commun 5. doi:  10.1038/ncomms6257
  21. 21.
    Børsting C, Morling (2015) Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 18:78–89. doi: 10.1016/j.fsigen.2015.02.002 CrossRefPubMedGoogle Scholar
  22. 22.
    Hines DZC, Vennemeyer M, Amory S, Huel RLM, Hanson I, Katzmaryk C, Parsons TJ (2014) Prioritized sampling of bone and teeth for DNA analysis in commingled cases. In: Adams BJ, Byrd JE (eds) Commingled human remains—methods in recovery, analysis, and identification. Elsevier, Amsterdam, pp 275–305Google Scholar
  23. 23.
    Huel R, Amory S, Bilić A, Vidović S, Jasaragić E, Parsons TJ (2012) DNA extraction from aged skeletal samples for STR typing by capillary electrophoresis. In: Alonso A (ed) DNA electrophoresis protocols for forensic genetics, methods in molecular biology, 830. Springer Science+Business Media, LLC, Berlin. doi: 10.1007/978-1-61779-461-2_13 Google Scholar
  24. 24.
    Müller K, Klein R, Miltner E, Wiegand P (2007) Q8—a short amplicon multiplex including the German DNA database systems. Forensic Sci Int Genet 1:205–207. doi: 10.1016/j.fsigen.2007.02.005 CrossRefPubMedGoogle Scholar
  25. 25.
  26. 26.
    Walsh S, Liu F, Wollstein A, Kovatsi L, Ralf A, Kosiniak-Kamysz A, Branicki W, Kayser M (2013) The HIrisPlex system for simultaneous prediction of hair and eye color from DNA. Forensic Sci Int Genet 7:98–115. doi: 10.1016/j.fsigen.2012.07.005 CrossRefPubMedGoogle Scholar
  27. 27.
    Walsh S, Chaitanya L, Clarisse L, Wirken L, Draus-Barini J, Kovatsi L, Maeda H, Ishikawa T, Sijen T, de Knijff P, Branicki W, Liu F, Kayser M (2014) Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. Forensic Sci Int Genet 9:150–161. doi: 10.1016/j.fsigen.2013.12.006 CrossRefPubMedGoogle Scholar
  28. 28.
    Harder M, Renneberg R, Meyer P, Krause-Kyora B, von Wurmb-Schwark N (2012) STR-typing of ancient skeletal remains: which multiplex-PCR is the best? Croat Med J 53:416–422. doi: 10.3325/cmj.2012.53.416 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zupanič Pajnič I, Pogorelc BG, Balažic J, Zupanc T, Štefanič B (2012) Highly efficient nuclear DNA typing of the World War II skeletal remains using three new autosomal short tandem repeat amplification kits with the extended European standard set of loci. Croat Med J 53:17–23. doi: 10.3325/cmj.2012.53.17 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Edson SM, Christensen AF, Barritt SM, Meehan A, Leney MD, Finelli LN (2009) Sampling of the cranium for mitochondrial DNA analysis of human skeletal remains. Forensic Sci. Int. Genet 2:269–270. doi: 10.1016/j.fsigss.2009.09.029 CrossRefGoogle Scholar
  31. 31.
    Rothe J, Melisch C, Powers N, Geppert M, Zander J, Purps J, Spors B, Nagy M (2015) Genetic research at a fivefold children’s burial from medieval Berlin. Forensic Sci Int Genet 15:90–97. doi: 10.1016/j.fsigen.2014.10.022 CrossRefPubMedGoogle Scholar
  32. 32.
    Just RS, Moreno LI, Smerick JB, Irwin JA (2017) Performance and concordance of the ForenSeq™ system for autosomal and Y chromosome short tandem repeat sequencing of reference-type specimens. Forensic Sci Int Genet 28:1–9. doi: 10.1016/j.fsigen.2017.01.001 CrossRefPubMedGoogle Scholar
  33. 33.
    Van der Gaag KJ, de Leeuw RH, Hoogenboom J, Patel J, Storts DR, Laros JFJ, de Knijff P (2016) Massively parallel sequencing of short tandem repeats—population data and mixture analysis results for the PowerSeq™ system. Forensic Sci Int Genet 24:86–96. doi: 10.1016/j.fsigen.2016.05.016 CrossRefPubMedGoogle Scholar
  34. 34.
    Churchill JD, Schmedes SE, King JL, Budowle B (2016) Evaluation of the Illumina® beta version ForenSeq™ DNA signature prep kit for use in genetic profiling. Forensic Sci Int Genet 20:20–29. doi: 10.1016/j.fsigen.2015.09.009 CrossRefPubMedGoogle Scholar
  35. 35.
    Fattorini P, Previderé C, Carboni I, Marrubini G, Sorçaburu-Cigliero S, Grignani P, Bertoglio B, Vatta P, Ricci U (2017) Performance of the ForenSeq™ DNA signature prep kit on highly degraded samples. Electrophoresis 38:1163–1174. doi: 10.1002/elps.201600290 CrossRefPubMedGoogle Scholar
  36. 36.
    Yang Y, Xie B, Yan J (2014) Application of next-generation sequencing technology in forensic science. Genomics, Proteomics, Bioinformatics 12:190–197. doi: 10.1016/j.gpb.2014.09.001 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Galina Kulstein
    • 1
    Email author
  • Thorsten Hadrys
    • 2
  • Peter Wiegand
    • 1
  1. 1.Institute of Legal MedicineUlm University HospitalUlmGermany
  2. 2.Institute of Forensic Sciences, DNA department, Bavarian State Criminal Police OfficeMunichGermany

Personalised recommendations