International Journal of Legal Medicine

, Volume 131, Issue 5, pp 1271–1281 | Cite as

A minimally-invasive method for profiling volatile organic compounds within postmortem internal gas reservoirs

  • Katelynn A. PerraultEmail author
  • Pierre-Hugues Stefanuto
  • Lena M. Dubois
  • Vincent Varlet
  • Silke Grabherr
  • Jean-François Focant
Original Article


In forensic casework, non-invasive and minimally-invasive methods for postmortem examinations are extremely valuable. Whole body postmortem computed tomography (PMCT) is often used to provide visualization of the internal characteristics of a body prior to more invasive procedures and has also been used to locate gas reservoirs inside the body to assist in determining cause of death. Preliminary studies have demonstrated that exploiting the volatile organic compounds (VOCs) located in these gas reservoirs by comprehensive two-dimensional gas chromatography–high-resolution time-of-flight mass spectrometry (GC×GC-HRTOF-MS) may assist in providing information regarding the postmortem interval. The aim of the current study was to further develop the procedures related to solid-phase microextraction (SPME) and GC×GC-HRTOF-MS analysis of gas reservoirs collected from deceased individuals. SPME fiber extraction parameters, internal standard approach, and sample stability were investigated. Altering the SPME parameters increased the selectivity and sensitivity for the VOC profile, and the use of a mixed deuterated internal standard contributed to data quality. Samples were found to be stable up to 6 weeks but were recommended to be analyzed within 4 weeks due to higher variation observed beyond this point. In addition, 29 VOC markers of interest were identified, and heart and/or abdominal cavity samples were suggested as a possible standardized sampling location for future studies. The data presented in this study will contribute to the long-term goal of producing a routine, accredited method for minimally-invasive VOC analysis in postmortem examinations.


Forensic science GCxGC HRTOFMS Volatile organic compounds Cadaver decomposition Postmortem interval 



The authors wish to thank Restek® Corporation, Trajan® Scientific and Medical, and Supelco Sigma-Aldrich® for providing equipment and supplies. JEOL BV Europe is also acknowledged for their instrument usage and project support. The research of K.A.P. was also supported by Wallonie-Bruxelles International.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Blokker BM, Wagensveld IM, Weustink AC et al (2015) Non-invasive or minimally invasive autopsy compared to conventional autopsy of suspected natural deaths in adults: a systematic review. Eur Radiol 26:1159–1179. doi: 10.1007/s00330-015-3908-8 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Donchin Y, Rivkind AI, Bar-Ziv J et al (1994) Utility of postmortem computed tomography in trauma victims. J Trauma 37:552–556. doi: 10.1097/00005373-199410000-00006 CrossRefPubMedGoogle Scholar
  3. 3.
    Wichmann D, Obbelode F, Vogel H et al (2012) Virtual autopsy as an alternative to traditional medical autopsy in the intensive care unit. Ann Intern Med 156:123–130. doi: 10.1059/0003-4819-156-2-201201170-00008 CrossRefPubMedGoogle Scholar
  4. 4.
    Varlet V, Bruguier C, Grabherr S et al (2014) Gas analysis of exhumed cadavers buried for 30 years: a case report about long time alteration. Int J Legal Med 128:719–724. doi: 10.1007/s00414-014-0998-9 CrossRefPubMedGoogle Scholar
  5. 5.
    Varlet V, Smith F, Giuliani N et al (2015) When gas analysis assists with postmortem imaging to diagnose causes of death. Forensic Sci Int 251:1–10. doi: 10.1016/j.forsciint.2015.03.010 CrossRefPubMedGoogle Scholar
  6. 6.
    Stefanuto P-H, Perrault KA, Grabherr S et al (2016) Postmortem internal gas reservoir monitoring using GC×GC-HRTOF-MS. Separations 3:24. doi: 10.3390/separations3030024 CrossRefGoogle Scholar
  7. 7.
    Stadler S, Stefanuto P-H, Brokl M et al (2013) Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem 85:998–1005. doi: 10.1021/ac302614y CrossRefPubMedGoogle Scholar
  8. 8.
    Brasseur C, Dekeirsschieter J, Schotsmans EMJ et al (2012) Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. J Chromatogr A 1255:163–170. doi: 10.1016/j.chroma.2012.03.048 CrossRefPubMedGoogle Scholar
  9. 9.
    Dekeirsschieter J, Stefanuto P-H, Brasseur C et al (2012) Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS). PLoS One 7:e39005. doi: 10.1371/journal.pone.0039005 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Perrault KA, Nizio KD, Forbes SL (2015) A comparison of one-dimensional and comprehensive two-dimensional gas chromatography for decomposition odour profiling using inter-year replicate field trials. Chromatographia 78:1057–1070. doi: 10.1007/s10337-015-2916-9 CrossRefGoogle Scholar
  11. 11.
    Stefanuto P-H, Perrault KA, Lloyd RM et al (2015) Exploring new dimensions in cadaveric decomposition odour analysis. Anal Methods 7:2287–2294. doi: 10.1039/C5AY00371G CrossRefGoogle Scholar
  12. 12.
    Taylor CM, Rosenhan AK, Raines JM, Rodriguez JM (2012) An arson investigation by using comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry. J Forensic Res 3:169–176. doi: 10.4172/2157-7145.1000169 Google Scholar
  13. 13.
    Nizio KD, Cochran JW, Forbes SL (2016) Achieving a near-theoretical maximum in peak capacity gain for the forensic analysis of ignitable liquids using GC × GC-TOFMS. Separations 3:1–17. doi: 10.3390/separations3030026 CrossRefGoogle Scholar
  14. 14.
    Kueh AJ, Marriott PJ, Wynne PM, Vine JH (2003) Application of comprehensive two-dimensional gas chromatography to drugs analysis in doping control. J Chromatogr A 1000:109–124. doi: 10.1016/S0021-9673(02)01998-2 CrossRefPubMedGoogle Scholar
  15. 15.
    Silva AI, Pereira HMG, Casilli A et al (2009) Analytical challenges in doping control: comprehensive two-dimensional gas chromatography with time of flight mass spectrometry, a promising option. J Chromatogr A 1216:2913–2922. doi: 10.1016/j.chroma.2008.10.042 CrossRefPubMedGoogle Scholar
  16. 16.
    Song SM, Marriott P, Wynne P (2004) Comprehensive two-dimensional gas chromatography - quadrupole mass spectrometric analysis of drugs. J Chromatogr A 1058:223–232. doi: 10.1016/j.chroma.2004.08.087 CrossRefPubMedGoogle Scholar
  17. 17.
    Mitrevski B, Veleska B, Engel E et al (2011) Chemical signature of ecstasy volatiles by comprehensive two-dimensional gas chromatography. Forensic Sci Int 209:11–20. doi: 10.1016/j.forsciint.2010.11.008 CrossRefPubMedGoogle Scholar
  18. 18.
    Stefanuto P-H, Perrault KA, Focant J-F, Forbes S (2015) Fast chromatographic method for explosive profiling. Chromatography 2:213–224. doi: 10.3390/chromatography2020213 CrossRefGoogle Scholar
  19. 19.
    Frysinger G (2002) GC×GC—A new analytical tool for environmental forensics. Environ Forensic 3:27–34Google Scholar
  20. 20.
    Varlet V, Smith F, de Froidmont S et al (2013) Innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography–mass spectrometry and stable labeled isotope as internal standard. Anal Chim Acta 784:42–46. doi: 10.1016/j.aca.2013.04.046 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao W, Ouyang G, Pawliszyn J (2007) Preparation and application of in-fibre internal standardization solid-phase microextraction. Analyst 132:256–261. doi: 10.1039/b612604a CrossRefPubMedGoogle Scholar
  22. 22.
    Wang Y, O’Reilly J, Chen Y, Pawliszyn J (2005) Equilibrium in-fibre standardisation technique for solid-phase microextraction. J Chromatogr A 1072:13–17. doi: 10.1016/j.chroma.2004.12.084 CrossRefPubMedGoogle Scholar
  23. 23.
    Rust L, Nizio KD, Forbes SL (2016) The influence of ageing and surface type on the odour profile of blood-detection dog training aids. Anal Bioanal Chem. doi: 10.1007/s00216-016-9748-9
  24. 24.
    Nizio KD, Perrault KA, Troobnikoff AN et al (2016) In vitro volatile organic compound profiling using GC×GC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study. J Breath Res 10:26008. doi: 10.1088/1752-7155/10/2/026008 CrossRefGoogle Scholar
  25. 25.
    Perrault KA, Stefanuto P, Dubois L et al (2016) A new approach for the characterization of organic residues from stone tools using GC×GC-TOFMS. Separations 3:1–16. doi: 10.3390/separations3020016 CrossRefGoogle Scholar
  26. 26.
    Bean HD, Rees CA, Hill JE (2016) Comparative analysis of the volatile metabolomes of Pseudomonas aeruginosa clinical isolates. J Breath Res 10:47102. doi: 10.1088/1752-7155/10/4/047102 CrossRefGoogle Scholar
  27. 27.
    Paczkowski S, Schütz S (2011) Post-mortem volatiles of vertebrate tissue. Appl Microbiol Biotechnol 91:917–935. doi: 10.1007/s00253-011-3417-x CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sgorbini B, Bicchi C, Cagliero C et al (2015) Herbs and spices: characterization and quantitation of biologically-active markers for routine quality control by multiple headspace solid-phase microextraction combined with separative or non-separative analysis. J Chromatogr A 1376:9–17. doi: 10.1016/j.chroma.2014.12.007 CrossRefPubMedGoogle Scholar
  29. 29.
    Reichenbach SE, Tian X, Tao Q et al (2011) Informatics for cross-sample analysis with comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry (GCxGC-HRMS). Talanta 83:1279–1288. doi: 10.1016/j.talanta.2010.09.057 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Katelynn A. Perrault
    • 1
    • 2
    Email author
  • Pierre-Hugues Stefanuto
    • 2
  • Lena M. Dubois
    • 2
  • Vincent Varlet
    • 3
  • Silke Grabherr
    • 4
  • Jean-François Focant
    • 2
  1. 1.Forensic Sciences UnitChaminade University of HonoluluHonoluluUSA
  2. 2.Organic and Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
  3. 3.Forensic Imaging UnitUniversity Center of Legal MedicineLausanne 25Switzerland
  4. 4.Forensic Toxicology and Chemistry UnitUniversity Center of Legal MedicineLausanne 25Switzerland

Personalised recommendations