International Journal of Legal Medicine

, Volume 131, Issue 5, pp 1203–1210 | Cite as

How many single nucleotide polymorphisms (SNPs) are needed to replace short tandem repeats (STRs) in forensic applications?

  • Hyo-Jung Lee
  • Jae Won Lee
  • Su Jin Jeong
  • Mira ParkEmail author
Original Article


Short tandem repeats (STRs) are the most commonly used forms of genetic information in forensic identification. In recent times, advances in the information on single nucleotide polymorphisms (SNPs) have raised the possibility that these markers could replace the forensically established STRs. In this work, we conducted comparative simulation studies that allowed us to estimate the number of SNPs needed if these markers were used instead of STRs in criminal cases and paternity investigations.


Short tandem repeats Single nucleotide polymorphisms 



This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (2012-0009833), the research project for practical use and advancement of forensic DNA analysis of Supreme Prosecutors’ Office, Republic of Korea (1333-304-260, 2014), and the National Research Foundation (NRF) grant funded by the Korea government (MSIP, 2016943438).


  1. 1.
    Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide in humans. Genetics 156:297–304PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kondrashow AS (2003) Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum Mutat 21:12–27CrossRefGoogle Scholar
  4. 4.
    Amorim A, Pereira L (2005) Pros and cons in the use of SNPs in forensic kinship investigation: a comparative analysis with STRs. Forensic Sci Int 150:17–21CrossRefPubMedGoogle Scholar
  5. 5.
    Lisa DW, John MS, Jeffrey JT, Rick WS (1998) Human identification by genotyping single nucleotide polymorphisms (SNPs) using an APEX microarray. Genetic Identity Conference Proceedings, Ninth International Symposium on Human IdentificationGoogle Scholar
  6. 6.
    Chakraborty R, Stivers DN, Su B, Zhong Y, Budowle B (1999) The utility of STR loci beyond human identification: implications for the development of new DNA typing systems. Electrophoresis 20:1682–1696CrossRefPubMedGoogle Scholar
  7. 7.
    Brenner CH (1999) The power of SNP’s—even without population data. Poster presentation at the 10th Promega Symposium on Human identificationGoogle Scholar
  8. 8.
    Evett IW, Weir BS (1998) Interpreting DNA evidence. Sinauer Associates, Sunderland, MSGoogle Scholar
  9. 9.
    Lee JW, Lee HS (1999) The DNA profiling for paternity testing. Korean Lawyers Association J 512:134–154Google Scholar
  10. 10.
    Lee JW, Lee HS, Park M, Hwang JJ (1999) Paternity probability when a relative of father is an alleged father. Sci Justice 39(4):223–230CrossRefPubMedGoogle Scholar
  11. 11.
    Lee HS, Lee JW, Han GR, Hwang JJ (2000) Motherless case in paternity testing. Forensic Sci Int 114:57–65CrossRefPubMedGoogle Scholar
  12. 12.
    Lee JW, Lee HS, Park M, Hwang JJ (2001) Paternity determination when the alleged father’s genotypes are unavailable. Forensic Sci Int 123:202–210CrossRefPubMedGoogle Scholar
  13. 13.
    Lee JW, Lee HS, Park M, Hwang JJ (2001) Evaluation of DNA match probability in criminal case. Forensic Sci Int 116:139–148CrossRefPubMedGoogle Scholar
  14. 14.
    Weir BS, Triggs CM, Starling L, Stowell LI, Walsh KAJ, Buckleton J (1997) Interpreting DNA mixtures. Journal of Forensic Science 42(2):213–222CrossRefGoogle Scholar
  15. 15.
    Fukshansky N, Bar W (1998) Interpreting forensic DNA evidence on the base of hypotheses testing. Int J Legal Med 111:62–66CrossRefPubMedGoogle Scholar
  16. 16.
    Kruger J, Fuhrman W, Lichte KH, Steffens C (1968) Zur Verwendung des Polymorphisms der sauren Erythrocytenphosphatase bei der Vaterschaftsbegutachtung. Dtsch Z Gerichtl Med 64:127–146Google Scholar
  17. 17.
    Jones DA (1972) Blood samples: probability of discrimination. Journal of Forensic Science 12:355–359CrossRefGoogle Scholar
  18. 18.
    Park JH, Hong SB, Kim JY, Chong Y, Han S, Jeon CH, Ahn HJ (2013) Genetic variation of 23 autosomal STR loci in Korean population. Forensic Science International: Genetics 7:76–77CrossRefGoogle Scholar
  19. 19.
    Kim JJ, Han BG, Lee HI, Yoo HW, Lee JK (2010) Development of SNP-based human identification system. Int J Legal Med 124:125–131CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hyo-Jung Lee
    • 1
  • Jae Won Lee
    • 2
  • Su Jin Jeong
    • 2
  • Mira Park
    • 3
    Email author
  1. 1.Product Development HQ, DonaA-STSeoulSouth Korea
  2. 2.Department of StatisticsKorea UniversitySeoulSouth Korea
  3. 3.Department of Preventive MedicineEulji UniversityDaejeonSouth Korea

Personalised recommendations