Advertisement

International Journal of Legal Medicine

, Volume 131, Issue 2, pp 411–421 | Cite as

Immunohistochemical detection of early myocardial infarction: a systematic review

  • Cristina Mondello
  • Luigi Cardia
  • Elvira Ventura-SpagnoloEmail author
Review

Abstract

The postmortem diagnosis of early myocardial infarction is a challenge for forensic pathologists because the routine histology is neither specific. Many authors have suggested the use of the immunohistochemistry to fill the gaps in the histological diagnosis of early myocardial infarction. This review aims to analyse advances of immunohistochemical detection of early cardiac damage due to ischaemia. To this purpose, we reviewed experimental studies that investigated immunohistochemical markers and their estimated timing of expression. The review was performed according to specific inclusion and exclusion criteria, and a total of 23 studies assessing the immunohistochemical markers for the diagnosis and timing of early myocardial infarction were identified. The literature review highlights that the analysed markers are complement components, others being inflammatory mediators, cardiac cell proteins, plasma proteins, stress or hypoxia-induced factors and proteins associated with heart failure. All studies demonstrate the effectiveness of the tested markers in the early detection of myocardial infarction in both animal and human samples.

Keywords

Early myocardial infarction Immunohistochemistry Sudden cardiac death Systematic review 

References

  1. 1.
    Zipes DP, Wellens HJ (1998) Sudden cardiac death. Circulation 98:2334–2351CrossRefPubMedGoogle Scholar
  2. 2.
    Byrne R, Constant O, Smyth Y, Callagy G, Nash P, Daly K, Crowley J (2008) Multiple source surveillance incidence and aetiology of out-of-hospital sudden cardiac death in a rural population in the West of Ireland. Eur Heart J 29:1418–1423CrossRefPubMedGoogle Scholar
  3. 3.
    Chugh SS, Jui J, Gunson K, Stecker EC, John BT, Thompson B, Ilias N, Vickers C, Dogra V, Daya M, Kron J, Zheng ZJ, Mensah G, McAnulty J (2004) Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large U.S. community. J Am Coll Cardiol 44:1268–1275CrossRefPubMedGoogle Scholar
  4. 4.
    de Vreede-Swagemakers JJ, Gorgels AP, Dubois-Arbouw WI, van Ree JW, Daemen MJ, Houben LG, Wellens HJ (1997) Out-of-hospital cardiac arrest in the 1990’s: a population-based study in the Maastricht area on incidence, characteristics and survival. J Am Coll Cardiol 30:1500–1505CrossRefPubMedGoogle Scholar
  5. 5.
    Vaillancourt C, Stiell IG, Canadian Cardiovascular Outcomes Research Team (2004) Cardiac arrest care and emergency medical services in Canada. Can J Cardiol 20:1081–1090Google Scholar
  6. 6.
    Murakoshi N, Aonuma K (2013) Epidemiology of arrhythmias and sudden cardiac death in Asia. Circ J 77:2419–2431CrossRefPubMedGoogle Scholar
  7. 7.
    Myerburg RJ, Junttila MJ (2012) Sudden cardiac death caused by coronary heart disease. Circulation 125(8):1043–1052CrossRefPubMedGoogle Scholar
  8. 8.
    Turillazzi E, Pomara C, Bello S, Neri M, Riezzo I, Fineschi V (2015) The meaning of different forms of structural myocardial injury, immune response and timing of infarct necrosis and cardiac repair. Curr Vasc Pharmacol 13(1):6–19CrossRefPubMedGoogle Scholar
  9. 9.
    Casscells W, Kimura H, Sanchez JA, Yu ZX, Ferrans VJ (1990) Immunohistochemical study of fibronectin in experimental myocardial infarction. Am J Pathol 137(4):801–810PubMedPubMedCentralGoogle Scholar
  10. 10.
    Brinkmann B, Sepulchre MA, Fechner G (1993) The application of selected histochemical and immunohistochemical markers and procedures to the diagnosis of early myocardial damage. Int J Legal Med 106(3):135–141CrossRefPubMedGoogle Scholar
  11. 11.
    Thomsen H, Held H (1995) Immunohistochemical detection of C5b-9(m) in myocardium: an aid in distinguishing infarction-induced ischemic heart muscle necrosis from other forms of lethal myocardial injury. Forensic Sci Int 71(2):87–95CrossRefPubMedGoogle Scholar
  12. 12.
    Väkevä A, Morgan BP, Tikkanen I, Helin K, Laurila P, Meri S (1994) Time course of complement activation and inhibitor expression after ischemic injury of rat myocardium. Am J Pathol 144(6):1357–1368PubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang JM, Riddick L (1996) Cytoskeleton immunohistochemical study of early ischemic myocardium. Forensic Sci Int 80(3):229–238CrossRefPubMedGoogle Scholar
  14. 14.
    Hu BJ, Chen YC, Zhu JZ (2002) Study on the specificity of fibronectin for post-mortem diagnosis of early myocardial infarction. Med Sci Law 42(3):195–199CrossRefPubMedGoogle Scholar
  15. 15.
    Hansen SH, Rossen K (1999) Evaluation of cardiac troponin I immunoreaction in autopsy hearts: a possible marker of early myocardial infarction. Forensic Sci Int 99(3):189–196CrossRefPubMedGoogle Scholar
  16. 16.
    Ortmann C, Pfeiffer H, Brinkmann B (2000) A comparative study on the immunohistochemical detection of early myocardial damage. Int J Legal Med 113(4):215–220CrossRefPubMedGoogle Scholar
  17. 17.
    Robert-Offerman SR, Leers MP, van Suylen RJ, Nap M, Daemen MJ, Theunissen PH (2000) Evaluation of the membrane attack complex of complement for the detection of a recent myocardial infarction in man. J Pathol 191(1):48–53CrossRefPubMedGoogle Scholar
  18. 18.
    Piercecchi-Marti MD, Lepidi H, Leonetti G, Vire O, Cianfarani F, Pellissier JF (2001) Immunostaining by complement C9: a tool for early diagnosis of myocardial infarction and application in forensic medicine. J Forensic Sci 46(2):328–334CrossRefPubMedGoogle Scholar
  19. 19.
    Xiaohong Z, Xiaorui C, Jun H, Qisheng Q (2002) The contrast of immunohistochemical studies of myocardial fibrinogen and myoglobin in early myocardial ischemia in rats. Leg Med 4(1):47–51CrossRefGoogle Scholar
  20. 20.
    Fishbein M, Wang T, Matijasevic M, Hong L, Apple FS (2003) Myocardial tissue troponins T and I. An immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc Pathol 12(2):65–71CrossRefPubMedGoogle Scholar
  21. 21.
    Pampín JB, García Rivero SA, Otero Cepeda XL, Vázquez Boquete A, Forteza Vila J, Hinojal Fonseca R (2006) Immunohistochemical expression of HIF-1alpha in response to early myocardial ischemia. J Forensic Sci 51(1):120–124CrossRefGoogle Scholar
  22. 22.
    Meng X, Ming M, Wang E (2006) Heart fatty acid binding protein as a marker for postmortem detection of early myocardial damage. Forensic Sci Int 160(1):11–16CrossRefPubMedGoogle Scholar
  23. 23.
    Willam C, Maxwell PH, Nichols L, Lygate C, Tian YM, Bernhardt W, Wiesener M, Ratcliffe PJ, Eckardt KU, Pugh CW (2006) HIF prolyl hydroxylases in the rat; organ distribution and changes in expression following hypoxia and coronary artery ligation. J Mol Cell Cardiol 41(1):68–77CrossRefPubMedGoogle Scholar
  24. 24.
    Jasra SK, Badian C, Macri I, Ra P (2012) Recognition of early myocardial infarction by immunohistochemical staining with cardiac troponin-I and complement C9. J Forensic Sci 57(6):1595–1600CrossRefPubMedGoogle Scholar
  25. 25.
    Hashmi S, Al-Salam S (2013) Loss of dystrophin staining in cardiomyocytes: a novel method for detection early myocardial infarction. Int J Clin Exp Pathol 6(2):249–257PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kakimoto Y, Ito S, Abiru H, Kotani H, Ozeki M, Tamaki K, Tsuruyama T (2013) Sorbin and SH3 domain-containing protein 2 is released from infarcted heart in the very early phase: proteomic analysis of cardiac tissues from patients. J Am Heart Assoc 2(6):e000565CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bi H, Yang Y, Huang J, Li Y, Ma C, Cong B (2013) Immunohistochemical detection of S100A1 in the postmortem diagnosis of acute myocardial infarction. Diagn Pathol 8:84CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kawamoto O, Michiue T, Ishikawa T, Maeda H (2014) Immunohistochemistry of connexin43 and zonula occludens-1 in the myocardium as markers of early ischemia in autopsy material. Histol Histopathol 29(6):767–775PubMedGoogle Scholar
  29. 29.
    Mayer F, Pröpper S, Ritz-Timme S (2014) Dityrosine, a protein product of oxidative stress, as a possible marker of acute myocardial infarctions. Int J Legal Med 128(5):787–794CrossRefPubMedGoogle Scholar
  30. 30.
    Al-Salam S, Hashmi S (2014) Galectin-1 in early acute myocardial infarction. PLoS One 9(1):e86994CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Turillazzi E, Di Paolo M, Neri M, Riezzo I, Fineschi V (2014) A theoretical timeline for myocardial infarction: immunohistochemical evaluation and Western blot quantification for interleukin-15 and monocyte chemotactic protein-1 as very early markers. J Transl Med 12:188CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hashmi S, Al-Salam S (2015) Galectin-3 is expressed in the myocardium very early post-myocardial infarction. Cardiovasc Pathol 24(4):213–223CrossRefPubMedGoogle Scholar
  33. 33.
    Jia JZ, Shen YW, Xue AM, Zhao ZQ (2015) Immunohistochemical analysis of cardiac troponin inhibitor in an experimental model of acute myocardial infarction experimental model and in human tissues. Pathol Res Pract 211(6):456–461CrossRefPubMedGoogle Scholar
  34. 34.
    Shabaiek A, Ismael N-H, Elsheikh S, Amin HA (2016) Role of cardiac myocytes heart fatty acid binding protein depletion (H-FABP) in early myocardial infarction in human heart (autopsy study). Open Access Maced J Med Sci 4(1):17–21CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sabatasso S, Mangin P, Fracasso T, Moretti M, Docquier M, Djonov V (2016) Early markers for myocardial ischemia and sudden cardiac death. Int J Legal Med 130(5):1265–1280CrossRefPubMedGoogle Scholar
  36. 36.
    Chugh SS (2010) Early identification of risk factors for sudden cardiac death. Nat Rev Cardiol 7:318–326CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, the Writing Group on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction (2012) Third universal definition of myocardial infarction. Circulation 126(16):2020–2035CrossRefPubMedGoogle Scholar
  38. 38.
    Jennings RB, Steenbergen C Jr, Reimer KA (1995) Myocardial ischemia and reperfusion. Monogr Pathol 37:47–80PubMedGoogle Scholar
  39. 39.
    Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74(1):86–107PubMedGoogle Scholar
  40. 40.
    Naik H, Sabatine M, Lilly L (2007) Ischemic heart disease and acute coronary syndromes. In: Lily LS (ed) Pathophysiology of heart disease: a collaborative project of medical students and faculty, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 141–196Google Scholar
  41. 41.
    Baroldi G, Silver MD (1995) Sudden death in ischemic heart disease: an alternative view on the significance of morphologic findings. Springer, AustinGoogle Scholar
  42. 42.
    Basso C, Thiene G (2006) The pathophysiology of myocardial reperfusion: a pathologist’s perspective. Heart 92(11):1559–1562CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fishbein MC, Y-Rit J, Lando U, Kanmatsuse K, Mercier JC, Ganz W (1980) The relationship of vascular injury and myocardial haemorrhage to necrosis after reperfusion. Circulation 62(6):1274–1279CrossRefPubMedGoogle Scholar
  44. 44.
    Pasotti M, Prati F, Arbustini E (2006) The pathology of myocardial infarction in the pre- and post-interventional era. Heart 92(11):1552–1556CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58(2):88–111CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11(5):255–265CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48(3):504–511CrossRefPubMedGoogle Scholar
  48. 48.
    Müller-Eberhard HJ (1986) The membrane attack complex of complement. Annu Rev Immunol 4:503–528CrossRefPubMedGoogle Scholar
  49. 49.
    Kloner RA, Ganote CE, Whalen DA Jr, Jennings RB (1974) Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Pathol 74(3):399–422PubMedPubMedCentralGoogle Scholar
  50. 50.
    Schäfer H, Mathey D, Hugo F, Bhakdi S (1986) Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol 137(6):1945–1949PubMedGoogle Scholar
  51. 51.
    Bhakdi S, Tranum-Jensen J (1983) Membrane damage by complement. Biochim Biophys Acta 737(3–4):343–372CrossRefPubMedGoogle Scholar
  52. 52.
    Crawford MH, Grover FL, Kolb WP, McMahan CA, O’Rourke RA, McManus LM, Pinckard RN (1988) Complement and neutrophil activation in the pathogenesis of ischemic myocardial injury. Circulation 78(6):1449–1458CrossRefPubMedGoogle Scholar
  53. 53.
    Timmers L, Pasterkamp G, de Hoog VC, Arslan F, Appelman Y, de Kleijn DP (2012) The innate immune response in reperfused myocardium. Cardiovasc Res 94(2):276–283CrossRefPubMedGoogle Scholar
  54. 54.
    Sun Y (2009) Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res 81(3):482–490CrossRefPubMedGoogle Scholar
  55. 55.
    Zuidema MY, Zhang C (2010) Ischemia/reperfusion injury: the role of immune cells. World J Cardiol 2(10):325–332CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Glatz JF, Kleine AH, van Nieuwenhoven FA, Hermens WT, van Dieijen-Visser MP, van der Vusse GJ (1994) Fatty-acid-binding protein as a plasma marker for the estimation of myocardial infarct size in humans. Br Heart J 71(2):135–140CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Okamoto F, Sohmiya K, Ohkaru Y, Kawamura K, Asayama K, Kimura H, Nishimura S, Ishii H, Sunahara N, Tanaka T (2000) Human heart-type cytoplasmic fatty acid-binding protein (H-FABP) for the diagnosis of acute myocardial infarction. Clinical evaluation of H-FABP in comparison with myoglobin and creatine kinase isoenzyme MB. Clin Chem Lab Med 38(3):231–238CrossRefPubMedGoogle Scholar
  58. 58.
    Ervasti JM, Sonnemann KJ (2008) Biology of the striated muscle dystrophin-glycoprotein complex. Int Rev Cytol 265:191–225CrossRefPubMedGoogle Scholar
  59. 59.
    Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90(8):3710–3714CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Beardslee MA, Lerner DL, Tadros PN, Tadtos PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Scffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662CrossRefPubMedGoogle Scholar
  61. 61.
    Matsushita S, Kurihara H, Watanabe M, Okada T, Sakai T, Amano A (2006) Alterations of phosphorylation state of connexin43 during hypoxia and reoxygenation are associated with cardiac function. J Histochem Cytochem 54:343–353CrossRefPubMedGoogle Scholar
  62. 62.
    Dobaczewski M, Bujak M, Zymek P, Ren G, Entman ML, Frangogiannis NG (2006) Extracellular matrix remodeling in canine and mouse myocardial infarcts. Cell Tissue Res 324:475–488CrossRefPubMedGoogle Scholar
  63. 63.
    Thornell LE, Holmbom B, Eriksson A, Reiz S, Marklund S, Näslund U (1992) Enzyme and immunohistochemical assessment of myocardial damage after ischaemia and reperfusion in a closed-chest pig model. Histochemistry 98(6):341–353CrossRefPubMedGoogle Scholar
  64. 64.
    Usui A, Kato K, Sasa H, Minaguchi K, Abe T, Murase M, Tanaka M, Takeuchi E (1990) S-100ao protein in serum during acute myocardial infarction. Clin Chem 36:639–641PubMedGoogle Scholar
  65. 65.
    Kiewitz R, Acklin C, Minder E, Huber PR, Schäfer BW, Heizmann CW (2000) S100A1, a new marker for acute myocardial ischemia. Biochem Biophys Res Commun 274:865–871CrossRefPubMedGoogle Scholar
  66. 66.
    Most P, Seifert H, Gao E, Funakoshi H, Völkers M, Heierhorst J, Remppis A, Pleger ST, DeGeorge BR Jr, Eckhart AD, Feldman AM, Koch WJ (2006) Cardiac S100A1 protein levels determine contractile performance and propensity towards heart failure after myocardial infarction. Circulation 114:1258–1268CrossRefPubMedGoogle Scholar
  67. 67.
    Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M, Boerries M, Remppis A, Katus HA, Most P (2009) S100A1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy. J Mol Cell Cardiol 47:445–455CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, van Veldhuisen DJ (2011) Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 43:60–68CrossRefPubMedGoogle Scholar
  69. 69.
    Morrow DA, O’Donoghue ML (2012) Galectin-3 in cardiovascular disease: a possible window into early myocardial fibrosis. J Am Coll Cardiol 60:1257–1258CrossRefPubMedGoogle Scholar
  70. 70.
    Lopez-Andrès N, Rossignol P, Iraqi W, Fay R, Ghio S, Cleland JG, Zannad F, Lacolley P (2012) Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail 14:74–81CrossRefPubMedGoogle Scholar
  71. 71.
    Reisz-Porszasz S, Probst MR, Fukunaga BN, Hankinson O (1994) Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Moll Cell Biol 14:6075–6086CrossRefGoogle Scholar
  72. 72.
    Kim CH, Cho YS, Chun YS, Park JW, Kim MS (2002) Early expression of myocardial HIF-1α in response to mechanical stresses. Cir Res 90:E25–E33CrossRefGoogle Scholar
  73. 73.
    Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 20:5197–5206CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Qu WS, Wang YH, Ma JF, Tian DS, Zhang Q et al (2011) Galectin-1 attenuates astrogliosis-associated injuries and improves recovery of rats following focal cerebral ischemia. J Neurochem 116:217–226CrossRefPubMedGoogle Scholar
  75. 75.
    Case D, Irwin D, Ivester C, Harral J, Morris K, Imamura M, Roedersheimer M, Patterson A, Carr M, Hagen M, Saavedra M, Crossno J Jr, Young KA, Dempsey EC, Poirier F, West J, Majka S (2007) Mice deficient in galectin-1 exhibit attenuated physiological responses to chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 292:L154–L164CrossRefPubMedGoogle Scholar
  76. 76.
    Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703(2):93–109CrossRefPubMedGoogle Scholar
  77. 77.
    Giulivi C, Traaseth NJ, Davies KJ (2003) Tyrosine oxidation products: analysis and biological relevance. Amino Acids 25(3–4):227–232CrossRefPubMedGoogle Scholar
  78. 78.
    Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cristina Mondello
    • 1
  • Luigi Cardia
    • 2
  • Elvira Ventura-Spagnolo
    • 3
    Email author
  1. 1.Department of Biomedical Science and of Morphological and Functional ImagesUniversity of MessinaMessinaItaly
  2. 2.Department of NeurosciencesUniversity of MessinaMessinaItaly
  3. 3.Legal Medicine Section – Department for Health Promotion and Mother-Child CareUniversity of PalermoPalermoItaly

Personalised recommendations