International Journal of Legal Medicine

, Volume 131, Issue 1, pp 1–19 | Cite as

Poisonous or non-poisonous plants? DNA-based tools and applications for accurate identification

  • Valerio Mezzasalma
  • Ioannis Ganopoulos
  • Andrea Galimberti
  • Laura Cornara
  • Emanuele Ferri
  • Massimo Labra
Review

Abstract

Plant exposures are among the most frequently reported cases to poison control centres worldwide. This is a growing condition due to recent societal trends oriented towards the consumption of wild plants as food, cosmetics, or medicine. At least three general causes of plant poisoning can be identified: plant misidentification, introduction of new plant-based supplements and medicines with no controls about their safety, and the lack of regulation for the trading of herbal and phytochemical products. Moreover, an efficient screening for the occurrence of plants poisonous to humans is also desirable at the different stages of the food supply chain: from the raw material to the final transformed product. A rapid diagnosis of intoxication cases is necessary in order to provide the most reliable treatment. However, a precise taxonomic characterization of the ingested species is often challenging. In this review, we provide an overview of the emerging DNA-based tools and technologies to address the issue of poisonous plant identification. Specifically, classic DNA barcoding and its applications using High Resolution Melting (Bar-HRM) ensure high universality and rapid response respectively, whereas High Throughput Sequencing techniques (HTS) provide a complete characterization of plant residues in complex matrices. The pros and cons of each approach have been evaluated with the final aim of proposing a general user’s guide to molecular identification directed to different stakeholder categories interested in the diagnostics of poisonous plants.

Keywords

Alkaloids DNA barcoding Food supply chain Molecular identification Poison centres Secondary metabolites 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wink M, van Wyk BE (2008) Mind-altering and poisonous plants of the world. Timber Press, Portland, p 464Google Scholar
  2. 2.
    (2008) The retailers code of practice for potentially harmful plants. (UK) Horticultural Trades Association, 2000; Guy’s & St Thomas’ Poisons Information Service and Royal Botanic Gardens, Kew 2008. http://www.kew.org/science/ecbot/HTA_code_list.pdf. Accessed 25 Oct 2016
  3. 3.
    Colombo ML, Assisi F, Puppa TD, Moro P, Sesana FM, Bissoli M, Borghini R, Perego S, Galasso G, Banfi E, Davanzo F (2010) Most commonly plant exposures and intoxications from outdoor toxic plants. J Pharm Sci Res 2:417–425Google Scholar
  4. 4.
    Diaz JH (2014) Atlas of human poisoning and envenoming, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Eddleston M, Persson H (2003) Acute plant poisoning and antitoxin antibodies. J Toxicol Clin Toxicol 41:309–315. doi: 10.1081/CLT-120021116 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Çaksen H, Odabaş D, Akbayram S, Cesur Y, Arslan Ş, Üner A, Öner AF (2003) Deadly nightshade (Atropa belladonna) intoxication: an analysis of 49 children. Hum Exp Toxicol 22:665–668. doi: 10.1191/0960327103ht404oa PubMedCrossRefGoogle Scholar
  7. 7.
    De Haro L, Pommier P, Tichadou L, Hayek-Lanthois M, Arditti J (2005) Poisoning by Coriaria myrtifolia Linnaeus: a new case report and review of the literature. Toxicon 6:600–603. doi: 10.1016/j.toxicon.2005.06.026 CrossRefGoogle Scholar
  8. 8.
    Sever M, Cekin M (2007) Anticholinergic intoxication due to Datura stramonium: three pediatric cases. JAEM 5:28–30Google Scholar
  9. 9.
    Berdai MA, Labib S, Chetouani K, Harandou M (2012) Atropa belladonna intoxication: a case report. Pan Afr Med J 11:72. doi: 10.11604/pamj.2012.11.72.1555 PubMedPubMedCentralGoogle Scholar
  10. 10.
    Zawilska JB (2015) “Legal Highs”—an emerging epidemic of novel psychoactive substances. Int Rev Neurobiol 120:273–300. doi: 10.1016/bs.irn.2015.02.009 PubMedCrossRefGoogle Scholar
  11. 11.
    Winstock A, Wilkins C (2011) ‘Legal highs.’ The challenge of new psychoactive substances. Series on Legislative Reform of Drug Policies Nr. 16. International Drug Policy Consortium (IDPC), LondonGoogle Scholar
  12. 12.
    Zawilska JB, Wojcieszak J (2013) Salvia divinorum: from Mazatec medicinal and hallucinogenic plant to emerging recreational drug. Hum Psychopharmacol 28:403–412. doi: 10.1002/hup.2304 PubMedCrossRefGoogle Scholar
  13. 13.
    Bebarta VS, Ramirez S, Varney SM (2012) Spice: a new “legal” herbal mixture abused by young active duty military personnel. Subst Abus 33:191–194. doi: 10.1080/08897077.2011.637610 PubMedCrossRefGoogle Scholar
  14. 14.
    Cornara L, Borghesi B, Canali C, Andrenacci M, Basso M, Federici S, Labra M (2013) Smart drugs: green shuttle or real drug? Int J Legal Med 127:1109–1123. doi: 10.1007/s00414-013-0893-9 PubMedCrossRefGoogle Scholar
  15. 15.
    European Monitoring Centre for Drugs and Drug Addiction (2015). European drug report 2015: trends and development. EMCDDA, Luxembourg. http://www.emcdda.europa.eu/attachements.cfm/att_239505_EN_TDAT15001ENN.pdf. Accessed 25 Oct 2016
  16. 16.
    Brnčić N, Višković I, Perić R, Đirlić A, Vitezić D, Cuculić D (2001) Accidental plant poisoning with Colchicum autumnale: report of two cases. Croat Med J 42:673–675PubMedGoogle Scholar
  17. 17.
    Colombo ML, Marangon K, Locatelli C, Giacchè M, Zulli R, Restani P (2009) Hemlock poisoning due to plant misidentification. J Pharm Sci Res 1:43–47Google Scholar
  18. 18.
    Tsiligianni IG, Vasilopoulos TK, Papadokostakis PK, Arseni GK, Eleni A, Lionis CD (2009) A two cases clinical report of mandragora poisoning in primary care in Crete, Greece: two case report. Cases J 2. doi: 10.1186/1757-1626-2-9331
  19. 19.
    Bruni I, Galimberti A, Caridi L, Scaccabarozzi D, De Mattia F, Casiraghi M, Labra M (2015) A DNA barcoding approach to identify plant species in multiflower honey. Food Chem 170:308–315. doi: 10.1016/j.foodchem.2014.08.060 PubMedCrossRefGoogle Scholar
  20. 20.
    Gilotta I, Brvar M (2010) Accidental poisoning with Veratrum album mistaken for wild garlic (Allium ursinum). Clin Toxicol (Phila) 48:949–952. doi: 10.3109/15563650.2010.533675 CrossRefGoogle Scholar
  21. 21.
    Falciola C, Zuccoli ML, Molino L, Giliotti B, Colombo ML, Sesana F, Davanzo F (2015) Plants: analysis of exposures reported to the National Milan Poison Control Center (2010-2013). Clin Toxicol 53:348–349Google Scholar
  22. 22.
    Rao R, Seshadri S, Seshadri S, Patil N, Rao K, Nayak V, Dsouza H, Jaunky C (2016) Fatal poisoning with Colchicum autumnale: a case report. Res J Pharm Biol Chem Sci 7:1760–1762Google Scholar
  23. 23.
    Maffè S, Cucchi L, Zenone F, Bertoncelli C, Beldì F, Colombo ML, Bielli M, Paino AM, Parravicini U, Paffoni P, Dellavesa P, Perucca A, Franchetti Pardo N, Signorotti F, Didino C, Zanetta MJ (2009) Digitalis must be banished from the table: a rare case of acute accidental Digitalis intoxication of a whole family. Cardiovasc Med 10:727–732. doi: 10.2459/JCM.0b013e32832c2314 CrossRefGoogle Scholar
  24. 24.
    Cortinovis C, Caloni F (2013) Epidemiology of intoxication of domestic animals by plants in Europe. Vet J 197:163–168. doi: 10.1016/j.tvjl.2013.03.007 PubMedCrossRefGoogle Scholar
  25. 25.
    Cortinovis C, Caloni F (2015) Alkaloid-containing plants poisonous to cattle and horses in Europe. Toxins 7:5301–5307. doi: 10.3390/toxins7124884 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Binev R, Valchev I, Nikolov J (2006) Clinical and pathological studies on intoxication in horses from freshly cut Jimson weed (Datura stramonium)-contaminated maize intended for ensiling. J S Afr Vet Assoc 77:215–219PubMedGoogle Scholar
  27. 27.
    Kupper J, Rentsch K, Mittelholzer A, Artho R, Meyer S, Kupferschmidt H, Naegeli H (2010) A fatal case of autumn crocus (Colchicum autumnale) poisoning in a heifer: confirmation by mass-spectrometric colchicine detection. J Vet Diagn Invest 22:119–122. doi: 10.1177/104063871002200125 PubMedCrossRefGoogle Scholar
  28. 28.
    Holmgren A, Hultén P (2009) The ancient plant Cycas revoluta caused disseminated intravascular coagulation in a dog. Clin Toxicol 47:480Google Scholar
  29. 29.
    Botha CJ, Penrith ML (2009) Potential plant poisonings in dogs and cats in southern Africa. J S Afr Vet Assoc 80:63PubMedGoogle Scholar
  30. 30.
    Bernhoft A (2010) A brief review on bioactive compounds in plants. In: Bernhoft A (ed) Bioactive compounds in plants—benefits and risks for man and animals. The Norwegian Academy of Science and Letters, OsloGoogle Scholar
  31. 31.
    Hornfeldt CS, Collins JE (1990) Toxicity of nightshade berries (Solanum dulcamara) in mice. J Toxicol Clin Toxicol 28:185–192. doi: 10.3109/15563659008993491 PubMedCrossRefGoogle Scholar
  32. 32.
    Tiwary AK, Puschner B, Kinde H, Tor ER (2005) Diagnosis of Taxus (yew) poisoning in a horse. J Vet Diagn Invest 17:252–255PubMedCrossRefGoogle Scholar
  33. 33.
    Pietsch J, Schulz K, Schmidt U, Andresen H, Schwarze B, Dreβler J (2007) A comparative study of five fatal cases of Taxus poisoning. Int J Legal Med 121:417–422PubMedCrossRefGoogle Scholar
  34. 34.
    Galimberti A, Spinelli S, Bruno A, Mezzasalma V, De Mattia F, Cortis P, Labra M (2016) Evaluating the efficacy of restoration plantings through DNA barcoding of frugivorous bird diets. Cons Biol in press. doi: 10.1111/cobi.12687
  35. 35.
    Alexander RF, Forbes GB, Hawkins ES (1948) A fatal case of solanine poisoning. Br Med J 2:518PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hayes AW, Kruger CL (2014) Hayes’ principles and methods of toxicology, 6th edn. CRC Press, Boca RatonGoogle Scholar
  37. 37.
    Everest JW, Powe Jr. TA, Freeman JD (2005) Poisonous plants of the Southeastern United States. Alabama Cooperative Extension, Alabama. http://www.aces.edu/pubs/docs/A/ANR-0975/ANR-0975.pdf. Accessed 25 Oct 2016
  38. 38.
    Ball MJ, Flather ML, Forfar JC (1987) Hemlock water dropwort poisoning. Postgrad Med J 63:363–365PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Heath KB (2001) A fatal case of apparent water hemlock poisoning. Vet Hum Toxicol 43:35–36PubMedGoogle Scholar
  40. 40.
    Schaefer KJ (2007) Weed watch: wild parsnip and poison hemlock. Integr Crop Manag 498:219–220Google Scholar
  41. 41.
    Łuczaj Ł, Pieroni A, Tardío J, Pardo-de-Santayana M, Sõukand R, Svanberg I, Kalle R (2012) Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Soc Botanicorum Pol 81:359–370. doi: 10.5586/asbp.2012.031 CrossRefGoogle Scholar
  42. 42.
    Łuczaj Ł, Pieroni A (2016) Nutritional ethnobotany in Europe: from emergency foods to healthy folk cuisines and contemporary foraging trends. In: de Cortes S-MM, Tardío J (eds) Mediterranean wild edible plants. Springer, New York, pp 33–56. doi: 10.1007/978-1-4939-3329-7_3 CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Mitchell A (2010) Bitter pill to swallow: a case of accidental poisoning with Digitalis purpurea. BMJ Case Rep 2010:1–3. doi: 10.1136/bcr.01.2010.2633
  45. 45.
    Di Lorenzo C, Ceschi A, Kupferschmidt H, Lüde S, De Souza NE, Dos Santos A, Colombo F, Frigerio G, Nørby K, Plumb J, Finglas P, Restani P (2015) Adverse effects of plant food supplements and botanical preparations: a systematic review with critical evaluation of causality. Br J Clin Pharmacol 79:578–592. doi: 10.1111/bcp.12519 PubMedCrossRefGoogle Scholar
  46. 46.
    The European Parliament and the Council of the European Union (2002) Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the Member States relating to food supplements (Text with EEA relevance). Official Journal L 183:51–57. http://data.europa.eu/eli/dir/2002/46/oj. Accessed 25 Oct 2016
  47. 47.
    Restani P, Di Lorenzo C, Garcia-Alvarez A, Badea M, Ceschi A, Egan B, Dima L, Lüde S, Maggi FM, Marculescu A, Milà-Villarroel R, Raats MM, Ribas-Barba L, Uusitalo L, Serra-Majem L (2016) Adverse effects of plant food supplements self-reported by consumers in the PlantLIBRA survey involving six European countries. PLoS One 11:e0150089. doi: 10.1371/journal.pone.0150089 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Rauber-Lüthy C, Halbsguth U, Kupferschmidt H, König N, Mégevand C, Zihlmann K, Ceschi A (2010) Low-dose exposure to Veratrum album in children causes mild-effects—a case series. Clin Toxicol (Phila) 48(3):234–237. doi: 10.3109/15563650903575243 CrossRefGoogle Scholar
  49. 49.
    Babu CK, Ansari KM, Mehrotra S, Khanna R, Khanna SK, Das M (2008) Alterations in redox potential of glutathione/glutathione disulfide and cysteine/cysteine disulfide couples in plasma of dropsy patients with argemone oil poisoning. Food Chem Toxicol 46:2409–2414. doi: 10.1016/j.fct.2008.03.031 PubMedCrossRefGoogle Scholar
  50. 50.
    Babu CK, Khanna SK, Das M (2007) Adulteration of mustard cooking oil with argemone oil: do Indian food regulatory policies and antioxidant therapy both need revisitation? Antioxid Redox Signal 9:515–525PubMedCrossRefGoogle Scholar
  51. 51.
    Parvathy VA, Swetha VP, Sheeja TE, Sasikumar B (2015) Detection of plant-based adulterants in turmeric powder using DNA barcoding. Pharm Biol 53:1774–1779. doi: 10.3109/13880209.2015.1005756 PubMedCrossRefGoogle Scholar
  52. 52.
    Pingault NM, Gibbs RA, Barclay AM, Monaghan M (2009) Two cases of anticholinergic syndrome associated with consumption of bitter lupin flour. Med J Aust 191:173–174PubMedGoogle Scholar
  53. 53.
    Daverio M, Cavicchiolo ME, Grotto P, Lonati D, Cananzi M, Da Dalt L (2014) Bitter lupine beans ingestion in a child: a disregarded cause of acute anticholinergic toxicity. Eur J Pediatr 173:1549–1551. doi: 10.1007/s00431-013-2088-2 PubMedCrossRefGoogle Scholar
  54. 54.
    Franz G (2016) European Pharmacopoeia: an optimal guarantee for the quality of herbals. Planta Med 82(05):OA8. doi: 10.1055/s-0036-1578578 CrossRefGoogle Scholar
  55. 55.
    World Health Organization (2004) WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems. Switzerland, GenevaGoogle Scholar
  56. 56.
    Routledge PA (2008) The European herbal medicines directive: could it have saved the lives of Romeo and Juliet? Drug Saf 31:416–418PubMedCrossRefGoogle Scholar
  57. 57.
    Raynor DK, Dickinson R, Knapp P, Long AF, Nicolson DJ (2011) Buyer beware? Does the information provided with herbal products available over the counter enable safe use? BMC Med 9:94. doi: 10.1186/1741-7015-9-94 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Stevinson C, Huntley A, Ernst E (2002) A systematic review of the safety of kava extract in the treatment of anxiety. Drug Saf 25:251–261PubMedCrossRefGoogle Scholar
  59. 59.
    Centers for Disease Control and Prevention CDC (2002) Hepatic toxicity possibly associated with kava-containing products—United States, Germany, and Switzerland, 1999-2002. MMWR Morb Mortal Wkly Rep 51:1065–1067Google Scholar
  60. 60.
    Warner ML, Kaufman NC, Grundmann O (2016) The pharmacology and toxicology of kratom: from traditional herb to drug of abuse. Int J Legal Med 130:127–138PubMedCrossRefGoogle Scholar
  61. 61.
    Jordan SA, Cunningham DG, Marles RJ (2010) Assessment of herbal medicinal products: challenges, and opportunities to increase the knowledge base for safety assessment. Toxicol Appl Pharmacol 243:198–216. doi: 10.1016/j.taap.2009.12.005 PubMedCrossRefGoogle Scholar
  62. 62.
    Lattanzio VM, Ciasca B, Powers S, von Holst C (2016) Validation of screening methods according to Regulation 519/2014/EU. Determination of deoxynivalenol in wheat by lateral flow immunoassay: A case study. TrAC 76:137–144. doi: 10.1016/j.trac.2015.10.009 Google Scholar
  63. 63.
    Mulder PP, von Holst C, Nivarlet N, van Egmond HP (2014) Intra-and inter-laboratory validation of a dipstick immunoassay for the detection of tropane alkaloids hyoscyamine and scopolamine in animal feed. Food Addit Contam Part A 31:1165–1176. doi: 10.1080/19440049.2014.914249 Google Scholar
  64. 64.
    Galimberti A, Sandionigi A, Bruno A, Bruni I, Barbuto M, Casiraghi M, Labra M (2015) Towards a universal molecular approach for the quality control of new foodstuffs. In Rai R V (ed) Advances in food biotechnology. Wiley, Chichester, UK. doi: 10.1002/9781118864463.ch04
  65. 65.
    Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321. doi: 10.1098/rspb.2002.2218 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Galimberti A, De Mattia F, Losa A, Bruni I, Federici S, Casiraghi M, Martellos S, Labra M (2013) DNA barcoding as a new tool for food traceability. Food Res Int 50:55–63. doi: 10.1016/j.foodres.2012.09.036 CrossRefGoogle Scholar
  67. 67.
    Galimberti A, Labra M, Sandionigi A, Bruno A, Mezzasalma V, De Mattia F. (2014). DNA barcoding for minor crops and food traceability. Advances in Agriculture. doi: 10.1155/2014/831875
  68. 68.
    Bruni I, De Mattia F, Galimberti A, Galasso G, Banfi E, Casiraghi M, Labra M (2010) Identification of poisonous plants by DNA barcoding approach. Int J Legal Med 124:595–603. doi: 10.1007/s00414-010-0447-3 PubMedCrossRefGoogle Scholar
  69. 69.
    Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S (2013) DNA barcoding detects contamination and substitution in North American herbal products. BMC Med 11:222. doi: 10.1186/1741-7015-11-222 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Xie L, Wang YW, Guan SY, Xie LJ, Long X, Sun CY (2014) Prospects and problems for identification of poisonous plants in China using DNA barcodes. Biomed Environ Sci 27:794–806. doi: 10.3967/bes2014.115 PubMedGoogle Scholar
  71. 71.
    Arunraj R, Abiramavalli M, Rathinasabapathi P (2016) DNA barcoding identifies the component species in the powder formulations of plant derived raw drugs sold in retail market in India. Res J Biotechnol 11:100–107CrossRefGoogle Scholar
  72. 72.
    Little DP (2014) A DNA mini‐barcode for land plants. Mol Ecol Resour 14:437–446. doi: 10.1111/1755-0998.12194 PubMedCrossRefGoogle Scholar
  73. 73.
    Hollingsworth PM et al (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 6:12794–12797. doi: 10.1073/pnas.0905845106 Google Scholar
  74. 74.
    Bruni I, De Mattia F, Martellos S, Galimberti A, Savadori P, Casiraghi M, Nimis PL, Labra M (2012) DNA barcoding as an effective tool in improving a digital plant identification system: a case study for the area of Mt. Valerio, Trieste (NE Italy). PLoS One 7:e43256. doi: 10.1371/journal.pone.0043256 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    De Mattia F, Gentili R, Bruni I, Galimberti A, Sgorbati S, Casiraghi M, Labra M (2012) A multi‐marker DNA barcoding approach to save time and resources in vegetation surveys. Bot J Linnean Soc 169:518–529CrossRefGoogle Scholar
  76. 76.
    Li et al (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci U S A 108:19641–19646. doi: 10.1073/pnas.1104551108 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613. doi: 10.1371/journal.pone.0008613 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6:e19254. doi: 10.1371/journal.pone.0019254 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ratnasingham S, Hebert PD (2007) bold: the Barcode of Life Data System. Mol Ecol Notes 7:355-364. http://www.barcodinglife.org. Accessed 25 Oct 2016
  80. 80.
    Ratnasingham S, Hebert PD (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One 8:e66213. doi: 10.1371/journal.pone.0066213 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lou SK, Wong KL, Li M, But PP, Tsui SK, Shaw PC (2010) An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database). BMC Genomics 11:402. doi: 10.1186/1471-2164-11-402 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Casiraghi M, Labra M, Ferri E, Galimberti A, De Mattia F (2010) DNA barcoding: a six-question tour to improve users’ awareness about the method. Brief Bioinform 11:440–453. doi: 10.1093/bib/bbq003 PubMedCrossRefGoogle Scholar
  83. 83.
    Barcaccia G, Lucchin M, Cassandro M (2016) DNA barcoding as a molecular tool to track down mislabeling and food piracy. Diversity 8:2. doi: 10.3390/d8010002 CrossRefGoogle Scholar
  84. 84.
    Thompson KA, Newmaster SG (2014) Molecular taxonomic tools provide more accurate estimates of species richness at less cost than traditional morphology-based taxonomic practices in a vegetation survey. Biodivers Conserv 23:1411–1424CrossRefGoogle Scholar
  85. 85.
    Bass C, Williamson MS, Wilding CS, Donnelly MJ, Field LM (2007) Identification of the main malaria vectors in the Anopheles gambiae species complex using a TaqMan real-time PCR assay. Malar J 6:155. doi: 10.1186/1475-2875-6-155 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zhang CL, Fowler MR, Scott NW, Lawson G, Slater A (2007) A TaqMan real-time PCR system for the identification and quantification of bovine DNA in meats, milks and cheeses. Food Control 18:1149–1158. doi: 10.1016/j.foodcont.2006.07.018 CrossRefGoogle Scholar
  87. 87.
    Pardo MA (2015) Evaluation of a dual-probe real time PCR system for detection of mandarin in commercial orange juice. Food Chem 172:377–384. doi: 10.1016/j.foodchem.2014.09.096 PubMedCrossRefGoogle Scholar
  88. 88.
    Chavan P, Joshi K, Patwardhan B (2006) DNA microarrays in herbal drug research. J Evid Based Complement Altern Med 3:447–457. doi: 10.1093/ecam/nel075 CrossRefGoogle Scholar
  89. 89.
    Heubl G (2010) New aspects of DNA-based authentication of Chinese medicinal plants by molecular biological techniques. Planta Med 76:1963–1974. doi: 10.1055/s-0030-1250519 PubMedCrossRefGoogle Scholar
  90. 90.
    Carles M, Cheung MKL, Moganti S, Dong TT, Tsim KW, Ip NY, Sucher NJ (2005) A DNA microarray for the authentication of toxic traditional Chinese medicinal plants. Planta Med 71:580–584. doi: 10.1055/s-2005-864166 PubMedCrossRefGoogle Scholar
  91. 91.
    Federici S, Fontana D, Galimberti A, Bruni I, De Mattia F, Cortis P, Galasso G, Labra M (2015) A rapid diagnostic approach to identify poisonous plants using DNA barcoding data. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 149:537-545. doi: 10.1080/11263504.2014.941031
  92. 92.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63–E69. doi: 10.1093/nar/28.12.e63 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Chaudhary AA, Mohsin M, Ahmad A (2012) Application of loop-mediated isothermal amplification (LAMP)-based technology for authentication of Catharanthus roseus (L.) G. Don. Protoplasma 249:417–422. doi: 10.1007/s00709-011-0293-2 PubMedCrossRefGoogle Scholar
  94. 94.
    Li M, Wong YL, Jiang LL, Wong KL, Wong YT, Bik-San Lau C et al (2013) Application of novel loop-mediated isothermal amplification (LAMP) for rapid authentication of the herbal tea ingredient Hedyotis diffusa Willd. Food Chem 141:2522–2525. doi: 10.1016/j.foodchem.2013.05.085 PubMedCrossRefGoogle Scholar
  95. 95.
    Lai GH, Chao J, Lin MK, Chang WT, Peng WH, Sun FC et al (2015) Rapid and sensitive identification of the herbal tea ingredient Taraxacum formosanum using loop-mediated isothermal amplification. Int J Mol Sci 16:1562–1575. doi: 10.3390/ijms16011562 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wu L, Wang B, Zhao M, Liu W, Zhang P, Shi Y et al (2016) Rapid identification of officinal Akebiae Caulis and its toxic adulterant Aristolochiae Manshuriensis Caulis (Aristolochia manshuriensis) by loop-mediated isothermal amplification. Front Pla Sci 7:887. doi: 10.3389/fpls.2016.00887 Google Scholar
  97. 97.
    Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160. doi: 10.1006/abio.1996.9916 PubMedCrossRefGoogle Scholar
  98. 98.
    Monis PT, Giglio S, Saint CP (2005) Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340:24–34. doi: 10.1093/nar/gkm671 PubMedCrossRefGoogle Scholar
  99. 99.
    Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130–138PubMedGoogle Scholar
  100. 100.
    Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860. doi: 10.1373/49.6.853 PubMedCrossRefGoogle Scholar
  101. 101.
    Montgomery JL, Sanford LN, Wittwer CT (2010) High-resolution DNA melting analysis in clinical research and diagnostics. Expert Rev Mol Diagn 10:219–240. doi: 10.1586/erm.09.84 PubMedCrossRefGoogle Scholar
  102. 102.
    Ganopoulos I, Aravanopoulos F, Madesis P et al (2013) Taxonomic identification of Mediterranean pines and their hybrids based on the high resolution melting (HRM) and trnL approaches: from cytoplasmic inheritance to timber tracing. PLoS One 8:e60945. doi: 10.1371/journal.pone.0060945 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ganopoulos I, Tsaballa A, Xanthopoulou A, Madesis P, Tsaftaris A (2013) Sweet cherry cultivar identification by high-resolution-melting (HRM) analysis using gene-based SNP markers. Plant Mol Biol Report 31:763–768. doi: 10.1007/s11105-012-0538-z CrossRefGoogle Scholar
  104. 104.
    Simko I (2016) High-resolution DNA melting analysis in plant research. Trends Plant Sci 21:528–537. doi: 10.1016/j.tplants.2016.01.004 PubMedCrossRefGoogle Scholar
  105. 105.
    Bosmali I, Ganopoulos I, Madesis P, Tsaftaris A (2012) Microsatellite and DNA-barcode regions typing combined with High Resolution Melting (HRM) analysis for food forensic uses: a case study on lentils (Lens culinaris). Food Res Int 46:141–147. doi: 10.1016/j.foodres.2011.12.013 CrossRefGoogle Scholar
  106. 106.
    Ganopoulos I, Madesis P, Darzentas N, Argiriou A, Tsaftaris A (2012) Barcode High Resolution Melting (Bar-HRM) analysis for detection and quantification of PDO “Fava Santorinis” (Lathyrus clymenum) adulterants. Food Chem 133:505–512. doi: 10.1016/j.foodchem.2012.01.015 PubMedCrossRefGoogle Scholar
  107. 107.
    Madesis P, Ganopoulos I, Anagnostis A, Tsaftaris A (2012) The application of Bar-HRM (Barcode DNA-High Resolution Melting) analysis for authenticity testing and quantitative detection of bean crops (Leguminosae) without prior DNA purification. Food Control 25:576–582. doi: 10.1016/j.foodcont.2011.11.034 CrossRefGoogle Scholar
  108. 108.
    Madesis P, Ganopoulos I, Sakaridis I, Argiriou A, Tsaftaris A (2014) Advances of DNA-based methods for tracing the botanical origin of food products. Food Res Int 60:163–172. doi: 10.1016/j.foodres.2013.10.042 CrossRefGoogle Scholar
  109. 109.
    Xanthopoulou A, Ganopoulos I, Kalivas A, Osathanunkul M, Chatzopoulou P, Tsaftaris A, Madesis P (2016) Multiplex HRM analysis as a tool for rapid molecular authentication of nine herbal teas. Food Control 60:113–116. doi: 10.1016/j.foodcont.2015.07.021 CrossRefGoogle Scholar
  110. 110.
    Jaakola L, Suokas M, Häggman H (2010) Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem 123:494–500. doi: 10.1016/j.foodchem.2010.04.069 CrossRefGoogle Scholar
  111. 111.
    Mader E, Ruzicka J, Schmiderer C, Novak J (2011) Quantitative high-resolution melting analysis for detecting adulterations. Anal Biochem 409:153–155. doi: 10.1016/j.ab.2010.10.009 PubMedCrossRefGoogle Scholar
  112. 112.
    Sun W, Li JJ, Xiong C, Zhao B, Chen SL (2016) The potential power of Bar-HRM technology in herbal medicine identification. Front Plant Sci 7:367. doi: 10.3389/fpls.2016.00367 PubMedPubMedCentralGoogle Scholar
  113. 113.
    Kalivas A, Ganopoulos I, Xanthopoulou A, Chatzopoulou P, Tsaftaris A, Madesis P (2014) DNA barcode ITS2 coupled with high resolution melting (HRM) analysis for taxonomic identification of Sideritis species growing in Greece. Mol Biol Rep 41:5147–5155. doi: 10.1007/s11033-014-3381-5 PubMedCrossRefGoogle Scholar
  114. 114.
    Tong YR, Jiang C, Huang LQ, Cui ZH, Yuan Y (2014) Molecular identification of Radix Notoginseng powder by DNA melt curve analysis. Chin J Pharm Anal 34:1384–1390Google Scholar
  115. 115.
    Hu J, Zhan ZL, Yuan Y, Huang LQ, Liu Y (2015) HRM identification of Chinese medicinal materials Mutong. Zhongguo Zhong Yao Za Zhi 40:2304–2308PubMedGoogle Scholar
  116. 116.
    Singtonat S, Osathanunkul M (2015) Fast and reliable detection of toxic Crotalaria spectabilis Roth. in Thunbergia laurifolia Lindl. herbal products using DNA barcoding coupled with HRM analysis. BMC Complement Altern Med 15:162. doi: 10.1186/s12906-015-0692-6 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Buddhachat K, Osathanunkul M, Madesis P, Chomdej S, Ongchai S (2015) Authenticity analyses of Phyllanthus amarus using barcoding coupled with HRM analysis to control its quality for medicinal plant product. Gene 573:84–90. doi: 10.1016/j.gene.2015.07.046 PubMedCrossRefGoogle Scholar
  118. 118.
    Galimberti A, Bruno A, Mezzasalma V, De Mattia F, Bruni I, Labra M (2015) Emerging DNA-based technologies to characterize food ecosystems. Food Res Int 69:424–433. doi: 10.1016/j.foodres.2015.01.017 CrossRefGoogle Scholar
  119. 119.
    Coghlan ML, Haile J, Houston J, Murray DC, White NE, Moolhuijzen P, Bellgard MI, Bunce M (2012) Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet 8:e1002657. doi: 10.1371/journal.pgen.1002657 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Cheng X, Su X, Chen X, Zhao H, Bo C, Xu J, Bai H, Ning K (2014) Biological ingredient analysis of traditional Chinese medicine preparation based on high-throughput sequencing: the story for Liuwei Dihuang Wan. Sci Rep 4:5147. doi: 10.1038/srep05147 PubMedPubMedCentralGoogle Scholar
  121. 121.
    Keller A, Danner N, Grimmer G, Ankenbrand M, Ohe K, Ohe W, Rost S, Härtel S, Steffan‐Dewenter I (2015) Evaluating multiplexed next‐generation sequencing as a method in palynology for mixed pollen samples. Plant Biol 17:558–566. doi: 10.1111/plb.12251 PubMedCrossRefGoogle Scholar
  122. 122.
    Edgar JA, Roeder E, Molyneux RJ (2002) Honey from plants containing pyrrolizidine alkaloids: a potential threat to health. J Agric Food Chem 50:2719–2730PubMedCrossRefGoogle Scholar
  123. 123.
    Koca I, Koca AF (2007) Poisoning by mad honey: a brief review. Food Chem Toxicol 45:1315–1318. doi: 10.1016/j.fct.2007.04.006 PubMedCrossRefGoogle Scholar
  124. 124.
    Weijters BJ, Verbunt RJ, Hoogsteen J, Visser RF (2008) Salade malade: malignant ventricular arrhythmias due to an accidental intoxication with Aconitum napellus. Neth Heart J 16:96–99PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ono T, Hayashida M, Uekusa K, Lai CF, Hayakawa H, Nihira M, Ohno Y (2009) An accidental case of aconite poisoning due to Kampo herbal medicine ingestion. Leg Med (Tokyo) 11:132–135. doi: 10.1016/j.legalmed.2008.11.001 CrossRefGoogle Scholar
  126. 126.
    Arlt EM, Keller T, Wittmann H, Monticelli F (2012) Fatal aconitine intoxication or thyroid storm? A case report. Leg Med 14:154–156. doi: 10.1016/j.legalmed.2012.01.003 CrossRefGoogle Scholar
  127. 127.
    Cikla U, Turkmen S, Karaca Y, Ayaz FA, Turedi S, Gunduz A (2011) An Atropa belladonna L. poisoning with acute subdural hematoma. Hum Exp Toxicol 30:1998–2001. doi: 10.1177/0960327111407225 PubMedCrossRefGoogle Scholar
  128. 128.
    Sundov Z, Nincevic Z, Definis-Gojanovic M, Glavina-Durdov M, Jukic I, Hulina N, Tonkic A (2005) Fatal colchicine poisoning by accidental ingestion of meadow saffron—case report. Forensic Sci Int 149:253–256PubMedCrossRefGoogle Scholar
  129. 129.
    Peters FT, Beyer J, Ewald AH, Maurer HH (2004) Colchicine poisoning after mix-up of Ramsons (Allium ursinum L.) and meadow saffron (Colchicum autumnale L.). Toxichem Krimtech 71:156–160Google Scholar
  130. 130.
    Alexandre J, Foucault A, Coutance G, Scanu P, Milliez P (2012) Digitalis intoxication induced by an acute accidental poisoning by lily of the valley. Circulation 25:1053–1055. doi: 10.1161/CIRCULATIONAHA.111.044628 CrossRefGoogle Scholar
  131. 131.
    Schep LJ, Slaughter RJ, Beasley DM (2009) Nicotinic plant poisoning. Clin Toxicol (Phila) 47:771–781. doi: 10.1080/1556365090325218 CrossRefGoogle Scholar
  132. 132.
    Dewitt MS, Swain R, Gibson LB Jr (1997) The dangers of jimson weed and its abuse by teenagers in the Kanawha Valley of West Virginia. W V Med J 93:182–185PubMedGoogle Scholar
  133. 133.
    Fuchs J, Rauber-Lüthy C, Kupferschmidt H, Kupper J, Kullak-Ublick GA, Ceschi A (2011) Acute plant poisoning: analysis of clinical features and circumstances of exposure. Clin Toxicol 49:671–680. doi: 10.3109/15563650.2011.597034 CrossRefGoogle Scholar
  134. 134.
    Piccillo GA, Mondati EG, Moro PA (2002) Six clinical cases of Mandragora autumnalis poisoning: diagnosis and treatment. Eur J Emerg Med 9:342–347PubMedCrossRefGoogle Scholar
  135. 135.
    Langford SD, Boor PJ (1996) Oleander toxicity: an examination of human and animal toxic exposures. Toxicology 109:1–13. doi: 10.1016/0300-483X(95)03296-R PubMedCrossRefGoogle Scholar
  136. 136.
    Worbs S, Köhler K, Pauly D, Avondet MA, Schaer M, Dorner MB, Dorner BG (2011) Ricinus communis intoxications in human and veterinary medicine—a summary of real cases. Toxins 3:1332–1372PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Costa Bou X, Soler i Ros JM, Seculi Palacios JL (1990) Poisoning by Robinia pseudoacacia. An Esp Pediatr 32:68–69PubMedGoogle Scholar
  138. 138.
    BfR, Federal Institute for Risk Assessment (Bundesinstitut f. ur Risikobewertung) (2007) Salad mix contaminated with groundsel containing pyrrolizidine alkaloids. BfR Opinion No 028/2007Google Scholar
  139. 139.
    Jain R, Sharma A, Gupta S, Sarethy IP, Gabrani R (2011) Solanum nigrum: current perspectives on therapeutic properties. Altern Med Rev 16:78–85PubMedGoogle Scholar
  140. 140.
    Grobosch T, Schwarze B, Stoecklein D, Binscheck T (2012) Fatal poisoning with Taxus baccata: quantification of paclitaxel (taxol A), 10-deacetyltaxol, baccatin III, 10-deacetylbaccatin III, cephalomannine (taxol B), and 3, 5-dimethoxyphenol in body fluids by liquid chromatography–tandem mass spectrometry. J Anal Toxicol 36:36–43. doi: 10.1093/jat/bkr012 PubMedCrossRefGoogle Scholar
  141. 141.
    Lutonský T, Kopová J, Masopust J, Klzo L (2014) Common yew intoxication: a case report. J Med Case Rep 8:4. doi: 10.1186/1752-1947-8-4 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Baum C, Bohnen S, Sill B, Philipp S, Damerow H, Kluge S, Reichenspurner H, Blankenberg S, Söffker G, Barten MJ, Sydow K (2015) Prolonged resuscitation and cardiogenic shock after intoxication with European yew (Taxus baccata): complete recovery after intermittent mechanical circulatory support. Int J Cardiol 181:176–178. doi: 10.1016/j.ijcard.2014.11.221 PubMedCrossRefGoogle Scholar
  143. 143.
    van der Kolk JH (2000) Onion poisoning in a herd of dairy cattle. Vet Rec 147:517–518PubMedCrossRefGoogle Scholar
  144. 144.
    Guitart R, Mateu C, López i Agulló A, Alberola J (2008) Heinz body anaemia in two dogs after Catalan spring onion (‘calçot’) ingestion: case reports. Vet Med 53:392–395Google Scholar
  145. 145.
    Sturgeon K, Campbell A (2008) A comparison of Allium species poisoning in cats and dogs. Clin Toxicol 46:385Google Scholar
  146. 146.
    Nollet H, Panter K, Vanschandevijl K, Lefere L, Stegelmeier B, Deprez P (2008) Suspected swainsonine poisoning in a Belgian horse. Equine Vet Educ 20:62–65. doi: 10.2746/095777308X264255 CrossRefGoogle Scholar
  147. 147.
    Caloni F, Cortinovis C, Rivolta M, Alonge S, Davanzo F (2013) Plant poisoning in domestic animals: epidemiological data from an Italian survey (2000–2011). Vet Rec 172:580. doi: 10.1136/vr.101225 PubMedCrossRefGoogle Scholar
  148. 148.
    Schrader A, Schulz O, Völker H, Puls H (2001) Recent plant poisoning in ruminants of northern and eastern Germany. Communication from the practice for the practice. Berl Munch Tierarztl Wochenschr 114:218–221PubMedGoogle Scholar
  149. 149.
    Binev R, Mitev J, Miteva T (2007) Intoxication with Poison Hemlock (Conium maculatum L.) in calves. Trakia J Sci 5:40–50Google Scholar
  150. 150.
    Gault G, Berny P, Lorgue G (1995) Plantes toxiques pour les animaux de compagnie. Recueil de Médecine Vétérinaire 171:171–176Google Scholar
  151. 151.
    Berny P, Caloni F, Croubels S, Sachana M, Vandenbroucke V, Davanzo F, Guitart R (2010) Animal poisoning in Europe. Part 2: companion animals. Vet J 183:255–259. doi: 10.1016/j.tvjl.2009.03.034 PubMedCrossRefGoogle Scholar
  152. 152.
    Caloni F, Cortinovis C, Rivolta M, Davanzo F (2012) Animal poisoning in Italy: 10 years of epidemiological data from the Poison Control Centre of Milan. Vet Rec 170:415. doi: 10.1136/vr.100210 PubMedCrossRefGoogle Scholar
  153. 153.
    Zentek J, Aboling S, Kamphues J (1999) Accident report: animal nutrition in veterinary medicine-actual cases: houndstongue (Cynoglossum officinale) in pasture—a health hazard for horses. Dtsch Tierarztl Wochenschr 106:475–477PubMedGoogle Scholar
  154. 154.
    Stegelmeier BL, Gardner DR, James LF, Molyneux RJ (1996) Pyrrole detection and the pathologic progression of Cynoglossum officinale (houndstongue) poisoning in horses. J Vet Diagn Invest 8:81–90PubMedCrossRefGoogle Scholar
  155. 155.
    Hansen P, Clerc B (2002) Anisocoria in the dog provoked by a toxic contact with an ornamental plant: Datura stramonium. Vet Ophthalmol 5:277–279. doi: 10.1046/j.1463-5224.2002.00224.x PubMedCrossRefGoogle Scholar
  156. 156.
    Soler-Rodríguez F, Martín A, García-Cambero JP, Oropesa AL, Pérez-López M (2006) Datura stramonium poisoning in horses: a risk factor for colic. Vet Rec 158:132–133PubMedCrossRefGoogle Scholar
  157. 157.
    Bofill FX, Bofill J, Such G, Piqué E, Guitart R (2007) Dos casos de intoxicación por contaminación de maíz con Datura stramonium en ganado vacuno. Revista de Toxicología 24:56–58Google Scholar
  158. 158.
    van Raamsdonk LW, Ozinga WA, Hoogenboom LA, Mulder PP, Mol JG, Groot MJ, van der Fels-Klerx HJ, de Nijs M (2015) Exposure assessment of cattle via roughages to plants producing compounds of concern. Food Chem 189:27–37. doi: 10.1016/j.foodchem.2015.02.050 PubMedCrossRefGoogle Scholar
  159. 159.
    Aboling S, Rottmann S, Wolf P, Jahn-Falk D, Kamphues J (2014) Case report: complex plant poisoning in heavily pregnant heifers in Germany. J Vet Sci Technol 5:178. doi: 10.4172/2157-7579.1000178 CrossRefGoogle Scholar
  160. 160.
    Campbell A, Chapman M (2000) Handbook of poisoning in dogs and cats. Blackwell Science, LondonCrossRefGoogle Scholar
  161. 161.
    Giuliano Albo A, Nebbia C (2004) Incidence of poisonings in domestic carnivores in Italy. Vet Res Commun 28:83–88PubMedCrossRefGoogle Scholar
  162. 162.
    Ferreiro D, Orozco JP, Mirón C, Real T, Hernández-Moreno D, Soler F, Pérez-López M (2010) Chinaberry tree (Melia azedarach) poisoning in dog: a case report. Top Companion Anim Med 25:64–67. doi: 10.1053/j.tcam.2009.07.001 PubMedCrossRefGoogle Scholar
  163. 163.
    Guitart R, Croubels S, Caloni F, Sachana M, Davanzo F, Vandenbroucke V, Berny P (2010) Animal poisoning in Europe. Part 1: farm livestock and poultry. Vet J 183:249–254. doi: 10.1016/j.tvjl.2009.03.002 PubMedCrossRefGoogle Scholar
  164. 164.
    Vandenbroucke V, Van Pelt H, De Backer P, Croubels S (2010) Animal poisonings in Belgium: a review of the past decade. Vlaams Diergeneeskundig Tijdschrift 79:259–268Google Scholar
  165. 165.
    Sargison ND, Williamson DS, Duncan JR, McCance RW (1996) Prunus padus (bird cherry) poisoning in cattle. Vet Rec 138:188PubMedCrossRefGoogle Scholar
  166. 166.
    Mosing M, Kuemmerle JM, Dadak A, Moens YP (2009) Metabolic changes associated with anaesthesia and cherry poisoning in a pony. Vet Anaesth Analg 36:255–260. doi: 10.1111/j.1467-2995.2009.00450.x PubMedCrossRefGoogle Scholar
  167. 167.
    García-Arroyo R, Soler F, Míguez MP (2005) Diferencias entre las intoxicaciones del vacuno en sistemas de explotación intensivo y extensivo. Revista de Toxicología 22:112Google Scholar
  168. 168.
    Barbier N (2005) Bilan d’activité du Centre National d’Informations Toxicologiques Vétérinaires pour l’année 2003. Thèse de Doctorat Vétérinaire, LyonGoogle Scholar
  169. 169.
    Muskens J, van Dorsser A, Roumen M (2009) Acorn poisoning in young cattle (Eikelvergiftiging bij jongvee). Tijdschr Diergeneeskd 134:704–707PubMedGoogle Scholar
  170. 170.
    Black DH (1991) Rhododendron poisoning in sheep. Vet Rec 128:363–364PubMedCrossRefGoogle Scholar
  171. 171.
    Holmgren A, Lindberg H (2012) Lethal ingestion of a maximum of 4.5 seeds of Ricinus communis in a dog. Clin Toxicol 50:319Google Scholar
  172. 172.
    Vanschandevijl K, van Loon G, Lefère L, Deprez P (2010) Black locust (Robinia pseudoacacia) intoxication as a suspected cause of transient hyperammonaemia and enteral encephalopathy in a pony. Equine Vet Educ 22:336–339CrossRefGoogle Scholar
  173. 173.
    Vos JH, Geerts AAJ, Borgers JW, Mars MH, Muskens JAM, van Wuijckhuise-Sjouke LA (2002) Jacobskruiskruid: bedrieglijke schoonheid. Vergiftiging met Senecio jacobea Tijdschrift voor Diergeneeskunde 127:753–756Google Scholar
  174. 174.
    Moyano MR, García A, Rueda A, Molina AM, Méndez A, Infante F (2006) Echium vulgare and Senecio vulgaris poisoning in fighting bulls. J Vet Med A Physiol Pathol Clin Med 53:24–25PubMedCrossRefGoogle Scholar
  175. 175.
    Crews C, Anderson WAC (2009) Detection of ragwort alkaloids in toxic hay by liquid chromatography/time-of-flight mass spectrometry. Vet Rec 165:568–569PubMedCrossRefGoogle Scholar
  176. 176.
    Chandes S (2002) Intoxication chez les équidés: étude épidémiologique à partir desdonnées du CNITV (1991 à 2002). These de Doctorat Vétérinaire, LyonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ZooPlantLab, Department of Biotechnology and BiosciencesUniversity of Milano-BicoccaMilanItaly
  2. 2.Institute of Applied Biosciences, CERTHThermiGreece
  3. 3.Department of Genetics and Plant Breeding, School of AgricultureAristotle University of ThessalonikiThessalonikiGreece
  4. 4.DISTAVUniversità di GenovaGenoaItaly
  5. 5.FEM2 Ambiente s.r.l.MilanItaly

Personalised recommendations