International Journal of Legal Medicine

, Volume 131, Issue 2, pp 527–536 | Cite as

The circles of life: age at death estimation in burnt teeth through tooth cementum annulations

  • Inês Oliveira-Santos
  • Márcia Gouveia
  • Eugénia Cunha
  • David Gonçalves
Original Article

Abstract

Age at death estimation in burnt human remains is problematic due to the severe heat-induced modifications that may affect the skeleton after a burning event. The objective of this paper was to assess if cementochronology, which focuses on the cementum incremental lines, is a reliable method of age estimation in burnt remains. Besides the classical approach based on the counting of incremental lines, another approach based on the extrapolation of incremental lines taking into account the cement layer thickness and the incremental line thickness was investigated. A comparison of the performance of the two techniques was carried out on a sample of 60 identified monoradicular teeth that were recently extracted at dentist offices and then experimentally burnt at two maximum temperatures (400 and 900 °C). Micrographs of cross-sections of the roots were taken via an optical microscope with magnification of ×100, ×200 and ×400. Incremental line counting and measurements were carried out with the ImageJ software. Age estimation based on incremental line counting in burnt teeth had no significant correlation with chronological age (p = 0.244 to 0.914) and led to large absolute mean errors (19 to 21 years). In contrast, age estimation based on the extrapolation approach showed a significant correlation with known age (p = 0.449 to 0.484). In addition, the mean absolute error of the latter was much smaller (10 to 14 years). The reason behind this discrepancy is the heat-induced dimensional changes of incremental lines that affect their visibility and individualization thus complicating line counting. Our results indicated that incremental lines extrapolation is successful at solving this problem and that the resulting age estimation is much more reliable.

Keywords

Forensic anthropology Cementochronology Heat-induced changes Incremental lines Dental age estimation 

References

  1. 1.
    Fairgrieve SI (2008) Forensic cremation recovery and analysis. CRC Press, USAGoogle Scholar
  2. 2.
    Ubelaker DH (2009) The forensic evaluation of burned skeletal remains: a synthesis. Forensic Sci Int 183(1):1–5PubMedCrossRefGoogle Scholar
  3. 3.
    Harbeck M, Schleuder R, Schneider J, Wiechmann I, Schmahl WW, Grupe G (2011) Research potential and limitations of trace analyses of cremated remains. Forensic Sci Int 204(1):191–200PubMedCrossRefGoogle Scholar
  4. 4.
    Alunni V, Grevin G, Buchet L, Quatrehomme G (2014) Forensic aspect of cremations on wooden pyre. Forensic Sci Int 241:167–172PubMedCrossRefGoogle Scholar
  5. 5.
    Thompson TJU (2004) Recent advances in the study of burned bone and their implications for forensic anthropology. Forensic Sci Int 146:S203–S205PubMedCrossRefGoogle Scholar
  6. 6.
    Gonçalves D (2011) The reliability of osteometric techniques for the sex determination of burned human skeletal remains. Homo 62(5):351–358PubMedCrossRefGoogle Scholar
  7. 7.
    Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193(1):1–13PubMedCrossRefGoogle Scholar
  8. 8.
    Gocha TP, Schutkowski H (2013) Tooth cementum annulation for estimation of age‐at‐death in thermally altered remains. J Forensic Sci 58(s1):S151–S155PubMedCrossRefGoogle Scholar
  9. 9.
    Absolonova K, Veleminsky P, Dobisikova M, Beran M, Zocova J (2013) Histological estimation of age at death from the compact bone of burned and unburned human ribs. J Forensic Sci 58(s1):S135–S145PubMedCrossRefGoogle Scholar
  10. 10.
    Rösing FW, Graw M, Marré B, Ritz-Timme S, Rothschild MA, Rötzscher K, Schmeling A, Schröder I, Geserick G (2007) Recommendations for the forensic diagnosis of sex and age from skeletons. Homo 58(1):75–89PubMedCrossRefGoogle Scholar
  11. 11.
    Schmidt CW (2008) The recovery and study of burned human teeth. In: Schmidt CW, Symes SA (eds) The analysis of burned human remains. Academic, London, pp 55–74CrossRefGoogle Scholar
  12. 12.
    Merlati G, Danesino P, Savio C, Fassina G, Osculati A, Menghini P (2002) Observations on dental prostheses and restorations subjected to high temperatures: experimental studies to aid identification processes. J Forensic Odontostomatol 20(2):17–24PubMedGoogle Scholar
  13. 13.
    Savio C, Merlati G, Danesino P, Fassina G, Menghini P (2006) Radiographic evaluation of teeth subjected to high temperatures: experimental study to aid identification processes. Forensic Sci Int 158(2):108–116PubMedCrossRefGoogle Scholar
  14. 14.
    Reesu GV, Augustine J, Urs AB (2015) Forensic considerations when dealing with incinerated human dental remains. J Forensic Leg Med 29:13–17PubMedCrossRefGoogle Scholar
  15. 15.
    Fereira JL, Fereira ÁED, Ortega AI (2008) Methods for the analysis of hard dental tissues exposed to high temperatures. Forensic Sci Int 178(2):119–124PubMedCrossRefGoogle Scholar
  16. 16.
    Gouveia M (2015) Avaliação do potencial da odontometria para a diagnose sexual em vestígios humanos queimados. University of Coimbra, DissertationGoogle Scholar
  17. 17.
    Morse DR (1991) Age-related changes of the dental pulp complex and their relationship to systemic aging. Oral Surg Oral Med Oral Pathol 72(6):721–745PubMedCrossRefGoogle Scholar
  18. 18.
    Gustafson G (1950) Age determination on teeth. J Am Dent Assoc 41(1):45–54PubMedCrossRefGoogle Scholar
  19. 19.
    Lamendin H, Baccino E, Humbert JF, Tavernier JC, Nossintchouk RM, Zerilli A (1992) A simple technique for age estimation in adult corpses: the two criteria dental method. J Forensic Sci 37(5):1373–1379PubMedCrossRefGoogle Scholar
  20. 20.
    Yekkala R, Meers C, Van Schepdael A, Hoogmartens J, Lambrichts I, Willems G (2006) Racemization of aspartic acid from human dentin in the estimation of chronological age. Forensic Sci Int 159:S89–S94PubMedCrossRefGoogle Scholar
  21. 21.
    Cameriere R, Ferrante L, Belcastro MG, Bonfiglioli B, Rastelli E, Cingolani M (2007) Age estimation by pulp/tooth ratio in Canines by peri‐apical x‐rays. J Forensic Sci 52(1):166–170PubMedCrossRefGoogle Scholar
  22. 22.
    Großkopf B (1989) Incremental lines in prehistoric cremated teeth. A technical note. Z Morphol Anthropol 77(3):309–311PubMedGoogle Scholar
  23. 23.
    Großkopf B (1990) Individualaltersbestimmung mit Hilfe von Zuwachsringen im Zement bodengelagerter menschlicher Zähne [abstract]. Z Rechtsmed 103(5):351–359PubMedCrossRefGoogle Scholar
  24. 24.
    Czermak A, Masanz R, Brather S (2012) Age at death evaluation of urn burials (Friedenhain-Přešťovice type) from the Late Roman and Migration Period - TCA applied to cremated teeth using automated line counting (Auto-TCA). 19th European Meeting of the Paleopathology Association (PPA), Lille, p 27Google Scholar
  25. 25.
    Schroeder HE, Amstad-Jossi M, Kroni R, Scherle W (1986) The periodontium. In: Schroeder HE, Amstad-Jossi M, Kroni R, Scherle W (eds) Hanbook of microscopic anatomy. Springer, Berlin, p V/5Google Scholar
  26. 26.
    Azaz B, Ulmansky M, Moshev R, Sela J (1974) Correlation between age and thickness of cementum in impacted teeth. Oral Surg Oral Med Oral Pathol 38(5):691–694PubMedCrossRefGoogle Scholar
  27. 27.
    Azaz B, Michaeli Y, Nitzan D (1977) Aging of tissues of the roots of nonfunctional human teeth (impacted canines). Oral Surg Oral Med Oral Pathol 43(4):572–578PubMedCrossRefGoogle Scholar
  28. 28.
    Solheim T (1990) Dental cementum apposition as an indicator of age. Eur J Oral Sci 98(6):510–519CrossRefGoogle Scholar
  29. 29.
    Stott GG, Sis RF, Levy BM (1982) Cemental annulation as an age criterion in forensic dentistry. J Dent Res 61(6):814–817PubMedCrossRefGoogle Scholar
  30. 30.
    Charles DK, Condon K, Cheverud JM, Buikstra JE (1986) Cementum annulation and age determination in Homo sapiens. I. Tooth variability and observer error. Am J Phys Anthropol 71(3):311–320PubMedCrossRefGoogle Scholar
  31. 31.
    Kagerer P, Grupe G (2001) Age-at-death diagnosis and determination of life-history parameters by incremental lines in human dental cementum as an identification aid. Forensic Sci Int 118(1):75–82PubMedCrossRefGoogle Scholar
  32. 32.
    Wittwer‐Backofen U, Gampe J, Vaupel JW (2004) Tooth cementum annulation for age estimation: results from a large known‐age validation study. Am J Phys Anthropol 123(2):119–129PubMedCrossRefGoogle Scholar
  33. 33.
    Renz H, Radlanski RJ (2006) Incremental lines in root cementum of human teeth—a reliable age marker? Homo 57(1):29–50PubMedCrossRefGoogle Scholar
  34. 34.
    Roksandic M, Vlak D, Schillaci MA, Voicu D (2009) Technical note: applicability of tooth cementum annulation to an archaeological population. Am J Phys Anthropol 140(3):583–588PubMedCrossRefGoogle Scholar
  35. 35.
    Kvaal SI, Solheim T, Bjerketvedt D (1996) Evaluation of preparation, staining and microscopic techniques for counting incremental lines in cementum of human teeth. Biotech Histochem 71(4):165–172PubMedCrossRefGoogle Scholar
  36. 36.
    Naji S, Colard T, Blondiaux J, Bertrand B, d’Incau E, Bocquet-Appel JP (2014) Cementochronology, to cut or not to cut? J Paleopathol, Int, dx.doi.org/10.1016/j.ijpp.2014.05.003 Google Scholar
  37. 37.
    Colard T, Bertrand B, Naji S, Delannoy Y, Bécart A (2015) Toward the adoption of cementochronology in forensic context. Int J Legal Med 1-8, doi:10.1007/s00414-015-1172-8.
  38. 38.
    Gupta P, Kaur H, Madhu Shankari GS, Jawanda MK, Sahi N (2014) Human age estimation from tooth cementum and dentin. J Clin Diagn Res 8(4):ZC07PubMedPubMedCentralGoogle Scholar
  39. 39.
    Gauthier J, Schutkowski H (2013) Assessing the application of tooth cementum annulation relative to macroscopic aging techniques in an archeological sample. Homo 64(1):42–57PubMedCrossRefGoogle Scholar
  40. 40.
    Haavikko K (1970) The formation and the alveolar and clinical eruption of the permanent teeth: an orthopantomographic study. Suom Hammaslaak Toim 66(3):103PubMedGoogle Scholar
  41. 41.
    Perini TA, Oliveira GLD, Ornellas JDS, Oliveira FPD (2005) Technical error of measurement in anthropometry. Rev Bras Med Esporte 11(1):81–85CrossRefGoogle Scholar
  42. 42.
    Lipsinic FE, Paunovich E, Houston GD, Robison SF (1986) Correlation of age and incremental lines in the cementum of human teeth. J Forensic Sci 31(3):982–989PubMedCrossRefGoogle Scholar
  43. 43.
    Shipman P, Foster G, Schoeninger M (1984) Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J Archaeol Sci 11(4):307–325CrossRefGoogle Scholar
  44. 44.
    Endris R, Berrsche R (1985) Color change in dental tissue as a sign of thermal damage. Z Rechtsmed 94(2):109PubMedCrossRefGoogle Scholar
  45. 45.
    Sandholzer MA, Walmsley AD, Lumley PJ, Landini G (2013) Radiologic evaluation of heat-induced shrinkage and shape preservation of human teeth using micro-CT. J Forensic Radiol Imaging 1(3):107–111CrossRefGoogle Scholar
  46. 46.
    Bush PJ, Bush MA (2011) The next level in victim identification: materials proper-ties as an aid in victim identification. In: Bowers C (ed) Forensic dental evidence. Elsevier Academic Press, London, pp 55–72CrossRefGoogle Scholar
  47. 47.
    Whyte TR (2001) Distinguishing remains of human cremations from burned animal bones. J Field Archaeol 28(3-4):437–448CrossRefGoogle Scholar
  48. 48.
    Gonçalves D, Thompson TJU, Cunha E (2011) Implications of heat-induced changes in bone on the interpretation of funerary behaviour and practice. J Archaeol Sci 38(6):1308–1313CrossRefGoogle Scholar
  49. 49.
    Thompson TJU (2005) Heat-induced dimensional changes in bone and their consequences for forensic anthropology. J Forensic Sci 50(5):1008–1015PubMedCrossRefGoogle Scholar
  50. 50.
    Sandholzer MA, Sui T, Korsunsky AM, Damien Walmsley A, Lumley PJ, Landini G (2014) X‐ray scattering evaluation of ultrastructural changes in human dental tissues with thermal treatment. J Forensic Sci 59(3):769–774PubMedCrossRefGoogle Scholar
  51. 51.
    Condon K, Charles DK, Cheverud JM, Buikstra JE (1986) Cementum annulation and age determination in Homo sapiens. II Estimates and accuracy. Am J Phys Anthropol 71(3):321–330PubMedCrossRefGoogle Scholar
  52. 52.
    Maat GJ, Gerretsen RRR, Aarents MJ (2006) Improving the visibility of tooth cementum annulations by adjustment of the cutting angle of microscopic sections. Forensic Sci Int 159(Suppl: 1):S95–S99PubMedCrossRefGoogle Scholar
  53. 53.
    Furseth R, Johansen E (1968) A microradiographic comparison of sound and carious human dental cementum. Arch Oral Biol 13(10):1197–IN13PubMedCrossRefGoogle Scholar
  54. 54.
    Broucker A, Colard T, Penel G, Blondiaux J, Naji S (2015) The impact of periodontal disease on cementochronology age estimation. Int. J. Paleopathol ISSN 1879-9817, http://dx.doi.org/10.1016/j.ijpp.2015.09.004Google Scholar
  55. 55.
    Dias PEM, Beaini TL, Melani RFH (2010) Age estimation from dental cementum incremental lines and periodontal disease. J Forensic Odontostomatol 28(1):13–21PubMedGoogle Scholar
  56. 56.
    DeHaan JD (2008) Fire and bodies. In: Schmidt CW, Symes SA (eds) The analysis of burned human remains. Academic, London, pp 1–13Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Inês Oliveira-Santos
    • 1
    • 2
  • Márcia Gouveia
    • 3
  • Eugénia Cunha
    • 1
    • 3
  • David Gonçalves
    • 1
    • 2
    • 4
  1. 1.Center for Functional Ecology, Laboratory of Forensic AnthropologyDepartment of Life Sciences, University of CoimbraCoimbraPortugal
  2. 2.Research Centre for Anthropology and Health (CIAS)Department of Life Sciences, University of CoimbraCoimbraPortugal
  3. 3.Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  4. 4.Archaeosciences Laboratory, Directorate General for Cultural Heritage and LARC/CIBIO/InBIOLisbonPortugal

Personalised recommendations