Advertisement

International Journal of Legal Medicine

, Volume 130, Issue 5, pp 1265–1280 | Cite as

Early markers for myocardial ischemia and sudden cardiac death

  • Sara Sabatasso
  • Patrice Mangin
  • Tony Fracasso
  • Milena Moretti
  • Mylène Docquier
  • Valentin Djonov
Original Article

Abstract

The post-mortem diagnosis of acute myocardial ischemia remains a challenge for both clinical and forensic pathologists. We performed an experimental study (ligation of left anterior descending coronary artery in rats) in order to identify early markers of myocardial ischemia, to further apply to forensic and clinical pathology in cases of sudden cardiac death. Using immunohistochemistry, Western blots, and gene expression analyses, we investigated a number of markers, selected among those which are currently used in emergency departments to diagnose myocardial infarction and those which are under investigation in basic research and autopsy pathology studies on cardiovascular diseases. The study was performed on 44 adult male Lewis rats, assigned to three experimental groups: control, sham-operated, and operated. The durations of ischemia ranged between 5 min and 24 h. The investigated markers were troponins I and T, myoglobin, fibronectin, C5b-9, connexin 43 (dephosphorylated), JunB, cytochrome c, and TUNEL staining. The earliest expressions (≤30 min) were observed for connexin 43, JunB, and cytochrome c, followed by fibronectin (≤1 h), myoglobin (≤1 h), troponins I and T (≤1 h), TUNEL (≤1 h), and C5b-9 (≤2 h). By this investigation, we identified a panel of true early markers of myocardial ischemia and delineated their temporal evolution in expression by employing new technologies for gene expression analysis, in addition to traditional and routine methods (such as histology and immunohistochemistry). Moreover, for the first time in the autopsy pathology field, we identified, by immunohistochemistry, two very early markers of myocardial ischemia: dephosphorylated connexin 43 and JunB.

Keywords

Early markers Myocardial ischemia Forensic pathology Clinical pathology Sudden cardiac death 

Notes

Acknowledgments

We are grateful to Prof Brenda Kwak, Dr Sandrine Morel, and Mrs Regula Buergy for their expertise, assistance, and performance of Western blots for Cx43.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

414_2016_1401_MOESM1_ESM.doc (30 kb)
ESM 1 (DOC 30 kb)

References

  1. 1.
    Priori SG, Blomström-Lundqvist C, Mazzanti A et al (2015) 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Eur Heart J 36(41):2793–2867CrossRefPubMedGoogle Scholar
  2. 2.
    Hayashi M, Shimizu W, Albert CM (2015) The spectrum of epidemiology underlying sudden cardiac death. Circ Res 116(12):1887–1906CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Saukko P, Knight B (2004) Knight’s forensic pathology, 3rd edn. Edward Arnold, London, pp 492–494Google Scholar
  4. 4.
    Priori SG, Aliot E, Blomstrom-Lundqvist C et al (2001) Task force on sudden cardiac death of the European Society of Cardiology. Eur Heart J 22:1374–1450CrossRefPubMedGoogle Scholar
  5. 5.
    Campobasso CP, Dell’Erba AS, Addante A et al (2008) Sudden cardiac death and myocardial ischemia indicators: a comparative study of four immunohistochemical markers. Am J Forensic Med Pathol 29:154–161CrossRefPubMedGoogle Scholar
  6. 6.
    Bouchardy B, Majno G (1974) Histopathology of early myocardial infarcts: a new approach. Am J Pathol 74:301–330PubMedPubMedCentralGoogle Scholar
  7. 7.
    Fishbein MC, Maclean D, Maroko PR (1978) The histopathologic evolution of myocardial infarction. Chest 73:843–849CrossRefPubMedGoogle Scholar
  8. 8.
    Vargas SO, Sampson BA, Schoen FJ (1999) Pathologic detection of early myocardial infarction: a critical review of the evolution and usefulness of modern techniques. Mod Pathol 12:635–645PubMedGoogle Scholar
  9. 9.
    Buja LM (1998) Modulation of the myocardial response to ischemia. Lab Invest 78:1345–1373PubMedGoogle Scholar
  10. 10.
    Cowan MJ, Reichenbach D, Turner P et al (1991) Cellular response of the evolving myocardial infarction after therapeutic coronary artery reperfusion. Hum Pathol 22:154–163CrossRefPubMedGoogle Scholar
  11. 11.
    Fracasso T, Karger B, Pfeiffer H et al (2010) Immunohistochemical identification of prevalent right ventricular ischemia causing right heart failure in cases of pulmonary fat embolism. Int J Legal Med 124:537–542CrossRefPubMedGoogle Scholar
  12. 12.
    Fracasso T, Pfeiffer H, Sauerland C et al (2011) Morphological identification of right ventricular failure in cases of fatal pulmonary thromboembolism. Int J Legal Med 125:45–50CrossRefPubMedGoogle Scholar
  13. 13.
    Haitao B, Ying Y, Jianye H et al (2013) Immunohistochemical detection of S100A1 in the postmortem diagnosis of acute myocardial infarction. Diagn Pathol 8:84CrossRefGoogle Scholar
  14. 14.
    Turillazzi E, Di Paolo M, Neri M et al (2014) A theoretical timeline for myocardial infarction: immunohistochemical evaluation and western blot quantification for Interleukin-15 and Monocyte chemotactic protein-1 as very early markers. J Transl Med 12:1–10CrossRefGoogle Scholar
  15. 15.
    Turillazzi E, Pomara C, Bello S et al (2015) The meaning of different forms of structural myocardial injury, immune response and timing of infarct necrosis and cardiac repair. Curr Vasc Pharmacol 13:6–19CrossRefPubMedGoogle Scholar
  16. 16.
    Fineschi V (2015) Measuring myocyte oxidative stress and targeting cytokines to evaluate inflammatory response and cardiac repair after myocardial infarction. Curr Vasc Pharmacol 13:3–5CrossRefPubMedGoogle Scholar
  17. 17.
    Neri M, Fineschi V, Di Paolo M et al (2015) Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Curr Vasc Pharmacol 13:26–36CrossRefPubMedGoogle Scholar
  18. 18.
    Piro FR, di Gioia CR, Gallo P et al (2000) Is apoptosis a diagnostic marker of acute myocardial infarction? Arch Pathol Lab Med 124:827–831PubMedGoogle Scholar
  19. 19.
    Abbate A, Melfi R, Patti G et al (2000) Apoptosis in recent myocardial infarction. Clin Ter 151:247–251PubMedGoogle Scholar
  20. 20.
    Rodríguez-Calvo MS, Tourret MN, Concheiro L et al (2001) Detection of apoptosis in ischemic heart: usefulness in the diagnosis of early myocardial injury. Am J Forensic Med Pathol 22:278–284CrossRefPubMedGoogle Scholar
  21. 21.
    Edston E, Gröntoft L, Johnsson J (2002) TUNEL: a useful screening method in sudden cardiac death. Int J Legal Med 116:22–26CrossRefPubMedGoogle Scholar
  22. 22.
    Nakatome M, Matoba R, Ogura Y et al (2002) Detection of cardiomyocyte apoptosis in forensic autopsy cases. Int J Legal Med 116:17–21CrossRefPubMedGoogle Scholar
  23. 23.
    Harpster MH, Bandyopadhyay S, Thomas DP et al (2006) Earliest changes in the left ventricular transcriptome postmyocardial infarction. Mamm Genome 17:701–715CrossRefPubMedGoogle Scholar
  24. 24.
    Thygesen K, Alpert JS, White HD (Joint ESC/ACCF/AHA/WHF task force for the redefinition of myocardial infarction) (2007) Universal definition of myocardial infarction. JAAC 50:2173–2195Google Scholar
  25. 25.
    Melanson SF, Tanasijevic MJ (2005) Laboratory diagnosis of acute myocardial infarction. Cardiovasc Pathol 14:156–161CrossRefPubMedGoogle Scholar
  26. 26.
    Lampe PD, Cooper CD, King TJ et al (2006) Analysis of phosphorylation of connexin43 at S325/328/330 in normoxic and ischemic heart. J Cell Sci 119:3435–3442CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Beardslee MA, Lerner DL, Tadros PN et al (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662CrossRefPubMedGoogle Scholar
  28. 28.
    Willems I, Arends JW, Daemen M (1996) Tenascin and fibronectin expression in healing human myocardial scars. J Pathol 179:321–325CrossRefPubMedGoogle Scholar
  29. 29.
    Geiss GK, Bumgarner RE, Birditt B et al (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26(3):317–325CrossRefPubMedGoogle Scholar
  30. 30.
    Bhindi R, Witting PK, McMahon AC et al (2006) Rat models of myocardial infarction: pathogenic insights and clinical relevance. Thromb Haemost 96(5):602–610PubMedGoogle Scholar
  31. 31.
    Morel S, Burnier L, Roatti A et al (2010) Unexpected role for the human Cx37 C1019T polymorphism in tumor cell proliferation. Carcinogenesis 31:1922–1931CrossRefPubMedGoogle Scholar
  32. 32.
    Beaume M, Hernandez D, Docquier M et al (2011) Orientation and expression of methicillin-resistant Staphylococcus aureus small RNAs by direct multiplexed measurements using the nCounter of Nanostring technology. J Microbiol Methods 84:327–334CrossRefPubMedGoogle Scholar
  33. 33.
    Ide T, Tsutsui H, Hayashidani S et al (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535CrossRefPubMedGoogle Scholar
  34. 34.
    Yoshida K (2009) Pursuing enigmas on ischemic heart disease and sudden cardiac death. Leg Med (Tokyo) 11(2):51–58CrossRefGoogle Scholar
  35. 35.
    Basso C, Rizzo S, Thiene G (2010) The metamorphosis of myocardial infarction following coronary recanalization. Cardiovasc Pathol 19(1):22–28CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang JM, Riddick L (1996) Cytoskeleton immunohistochemical study of early ischemic myocardium. Forensic Sci Int 80(3):229–238CrossRefPubMedGoogle Scholar
  37. 37.
    Fishbein MC, Wang T, Matijasevic M et al (2003) Myocardial tissue troponins T and I: an immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc Pathol 12(2):65–71CrossRefPubMedGoogle Scholar
  38. 38.
    Jasra SK, Badian C, Macri I et al (2012) Recognition of early myocardial infarction by immunohistochemical staining with cardiac troponin-I and complement C9. J Forensic Sci 57(6):1595–1600CrossRefPubMedGoogle Scholar
  39. 39.
    Ortmann C, Pfeiffer H, Brinkmann B (2000) A comparative study on the immunohistochemical detection of early myocardial damage. Int J Legal Med 113(4):215–220CrossRefPubMedGoogle Scholar
  40. 40.
    Brinkmann B, Sepulchre MA, Fechner G (1993) The application of selected histochemical and immunohistochemical markers and procedures to the diagnosis of early myocardial damage. Int J Legal Med 106(3):135–141CrossRefPubMedGoogle Scholar
  41. 41.
    Leadbeatter S, Wawman HM, Jasani B (1989) Immunocytochemical diagnosis of early myocardial ischaemic/hypoxic damage. Forensic Sci Int 40(2):171–180CrossRefPubMedGoogle Scholar
  42. 42.
    Shekhonin BV, Guriev SB, Irgashev SB et al (1990) Immunofluorescent identification of fibronectin and fibrinogen/fibrin in experimental myocardial infarction. J Mol Cell Cardiol 22(5):533–541CrossRefPubMedGoogle Scholar
  43. 43.
    Casscells W, Kimura H, Sanchez JA et al (1990) Immunohistochemical study of fibronectin in experimental myocardial infarction. Am J Pathol 137(4):801–810PubMedPubMedCentralGoogle Scholar
  44. 44.
    Hu BJ, Chen YC, Zhu JZ (1996) Immunohistochemical study of fibronectin for postmortem diagnosis of early myocardial infarction. Forensic Sci Int 78(3):209–217CrossRefPubMedGoogle Scholar
  45. 45.
    Hu BJ, Chen YC, Zhu JZ (2002) Study on the specificity of fibronectin for post-mortem diagnosis of early myocardial infarction. Med Sci Law 42(3):195–199PubMedGoogle Scholar
  46. 46.
    Piercecchi-Marti MD, Lepidi H, Leonetti G et al (2001) Immunostaining by complement C9: a tool for early diagnosis of myocardial infarction and application in forensic medicine. J Forensic Sci 46(2):328–334CrossRefPubMedGoogle Scholar
  47. 47.
    Edston E, Kawa K (1995) Immunohistochemical detection of early myocardial infarction: an evaluation of antibodies against the terminal complement complex (C5b-9). Int J Legal Med 108(1):27–30CrossRefPubMedGoogle Scholar
  48. 48.
    Schäfer H, Mathey D, Hugo F et al (1986) Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol 137(6):1945–1949PubMedGoogle Scholar
  49. 49.
    Ortiz-Rey JA, Suarez-Penaranda JM, Da Silva EA et al (2002) Immunohistochemical detection of fibronectin and tenascin in incised human skin injuries. Forensic Sci Int 126(2):118–122CrossRefPubMedGoogle Scholar
  50. 50.
    Knowlton AA, Connelly CM, Romo GM et al (1992) Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest 89(4):1060–1068CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Collinson PO, Gaze DC (2007) Biomarkers of cardiovascular damage. Med Princ Pract 16(4):247–261CrossRefPubMedGoogle Scholar
  52. 52.
    Kavsak PA, MacRae AR, Newman AM et al (2007) Effects of contemporary troponin assay sensitivity on the utility of the early markers myoglobin and CKMB isoforms in evaluating patients with possible acute myocardial infarction. Clin Chem Acta 380(1–2):213–216CrossRefGoogle Scholar
  53. 53.
    Thomsen H, Schulz A, Bhakdi S (1990) Immunohistochemical C5b-9-complement complex demonstration in early stages of myocardial necroses using paraffin sections. Z Rechtsmed 103(3):199–206CrossRefPubMedGoogle Scholar
  54. 54.
    Väkevä A, Morgan BP, Tikkanen I et al (1994) Time course of complement activation and inhibitor expression after ischemic injury of rat myocardium. Am J Pathol 144(6):1357–1368PubMedPubMedCentralGoogle Scholar
  55. 55.
    Saffitz JE, Kléber AG (2012) Gap junctions, slow conduction, and ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 60(12):1111–1113CrossRefPubMedGoogle Scholar
  56. 56.
    Morel S, Frias MA, Rosker C et al (2012) The natural cardioprotective particle HDL modulates connexin43 gap junction channels. Cardiovasc Res 93(1):41–49CrossRefPubMedGoogle Scholar
  57. 57.
    Bardales RH, Hailey LS, Xie SS et al (1996) In situ apoptosis assay for the detection of early acute myocardial infarction. Am J Pathol 149(3):821–829PubMedPubMedCentralGoogle Scholar
  58. 58.
    Jugdutt BI, Idikio HA (2005) Apoptosis and oncosis in acute coronary syndromes: assessment and implications. Mol Cell Biochem 270(1–2):177–200CrossRefPubMedGoogle Scholar
  59. 59.
    Takemura G, Fujiwara H (2006) Morphological aspects of apoptosis in heart diseases. J Cell Mol Med 10(1):56–75CrossRefPubMedGoogle Scholar
  60. 60.
    Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136CrossRefPubMedGoogle Scholar
  61. 61.
    Piechaczyk M, Farras R (2008) Regulation and function of JunB in cell proliferation. Biochem Soc Trans 36(Pt5):864–867CrossRefPubMedGoogle Scholar
  62. 62.
    Kajstura J, Urbanek K, Perl S et al (2010) Cardiomyogenesis in the adult human heart. Circ Res 107:305–315CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wu C, Yan L, Depre C et al (2009) Cytochrome c oxidase III as a mechanism for apoptosis in heart failure following myocardial infarction. Am J Physiol Cell Physiol 297:C928–C934CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sara Sabatasso
    • 1
    • 2
  • Patrice Mangin
    • 1
  • Tony Fracasso
    • 1
  • Milena Moretti
    • 1
    • 2
  • Mylène Docquier
    • 3
  • Valentin Djonov
    • 2
  1. 1.University Center of Legal Medicine Lausanne-GenevaGenevaSwitzerland
  2. 2.Institute of AnatomyUniversity of BernBernSwitzerland
  3. 3.Genomics platform, Centre Médical UniversitaireUniversity of GenevaGenevaSwitzerland

Personalised recommendations