Advertisement

International Journal of Legal Medicine

, Volume 130, Issue 4, pp 1159–1167 | Cite as

Age estimation based on pulp cavity/chamber volume of 13 types of tooth from cone beam computed tomography images

  • Zhi-pu Ge
  • Pan Yang
  • Gang Li
  • Ji-zong Zhang
  • Xu-chen Ma
Original Article

Abstract

Aim

The aims of this study are to identify which type of tooth has the strong relationship between age and pulp cavity/chamber volume among 13 types of tooth from the same dentition and to determine whether the inclusion of multiple types of tooth may improve the accuracy of age estimation.

Materials and methods

Cone beam computed tomography (CBCT) images from 115 females and 125 males aged between 16 and 63 years were analyzed. The DICOM data of all the images were imported into ITK-SNAP 2.4 for the calculation of pulp cavity/chamber volumes. Logarithmic regression analysis and multiple linear regression analysis were applied to establish the relationship between age and pulp cavity/chamber volumes.

Results

Among the 13 types of tooth, maxillary second molars have the largest R 2 (0.491, 0.642, and 0.498) and the smallest SEE (8.119, 6.754, and 8.022) in male, female, and pooled gender samples, respectively. The multiple linear regression analysis for the combination of multi-types of tooth indicated that a larger R 2 (0.627, 0.701, and 0.631) and smaller SEE (7.100, 6.258, and 6.970) than the counterpart calculated from the logarithmic regression analysis of a single type of tooth in male, female, and pooled gender samples, respectively.

Conclusion

The pulp chamber volume of the maxillary second molars has the largest correlation coefficient with age. Using multiple types of tooth may improve the accuracy of age estimation compared with only one type of tooth used.

Keywords

Age estimation Cone-beam CT Pulp cavity volume Secondary dentine 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no relevant conflicts of interest to declare.

References

  1. 1.
    Kringsholm B, Jakobsen J, Sejrsen B, Gregersen M (2001) Unidentified bodies/skulls found in Danish waters in the period 1992-1996. Forensic Sci Int 123(2-3):150–158CrossRefPubMedGoogle Scholar
  2. 2.
    Liang XH, Tang YL, Luo E, Zhu GQ, Zhou H, Hu J, Tang XF, Wang XY (2009) Maxillofacial injuries caused by the 2008 Wenchuan earthquake in China. J Oral Maxillofac Surg 67(7):1442–1445CrossRefPubMedGoogle Scholar
  3. 3.
    Ardakani F, Bashardoust N, Sheikhha M (2007) The accuracy of dental panoramic radiography as an indicator of chronological age in Iranian individuals. J Forensic Odontostomatol 25(2):30–35PubMedGoogle Scholar
  4. 4.
    Panchbhai AS (2011) Dental radiographic indicators, a key to age estimation. Dentomaxillofac Radiol 40(4):199–212CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Philippas GG, Applebaum E (1966) Age factor in secondary dentin formation. J Dent Res 45(3):778–789CrossRefPubMedGoogle Scholar
  6. 6.
    Solheim T (1992) Amount of secondary dentin as an indicator of age. Scand J Dent Res 100(4):193–199PubMedGoogle Scholar
  7. 7.
    Morse DR (1991) Age-related changes of the dental pulp complex and their relationship to systemic aging. Oral Surg Oral Med Oral Pathol 72(6):721–745CrossRefPubMedGoogle Scholar
  8. 8.
    Morse DR, Esposito JV, Schoor RS (1993) A radiographic study of aging changes of the dental pulp and dentin in normal teeth. Quintessence Int 24(5):329–333PubMedGoogle Scholar
  9. 9.
    Drusini AG, Toso O, Ranzato C (1997) The coronal pulp cavity index: a biomarker for age determination in human adults. Am J Phys Anthropol 103(3):353–363CrossRefPubMedGoogle Scholar
  10. 10.
    Kvaal SI, Kolltveit KM, Thomsen IO, Solheim T (1995) Age estimation of adults from dental radiographs. Forensic Sci Int 74(3):175–185CrossRefPubMedGoogle Scholar
  11. 11.
    Zaher JF, Fawzy IA, Habib SR, Ali MM (2011) Age estimation from pulp/tooth area ratio in maxillary incisors among Egyptians using dental radiographic images. J Forensic Leg Med 18(2):62–65CrossRefPubMedGoogle Scholar
  12. 12.
    Karkhanis S, Mack P, Franklin D (2013) Age estimation standards for a Western Australian population using the coronal pulp cavity index. Forensic Sci Int 231(1-3):412 e1–412 e6CrossRefPubMedGoogle Scholar
  13. 13.
    Yang F, Jacobs R, Willems G (2006) Dental age estimation through volume matching of teeth imaged by cone-beam CT. Forensic Sci Int 159(Suppl 1):S78–S83CrossRefPubMedGoogle Scholar
  14. 14.
    Star H, Thevissen P, Jacobs R, Fieuws S, Solheim T, Willems G (2011) Human dental age estimation by calculation of pulp-tooth volume ratios yielded on clinically acquired cone beam computed tomography images of monoradicular teeth. J Forensic Sci 56(Suppl 1):S77–S82CrossRefPubMedGoogle Scholar
  15. 15.
    Jagannathan N, Neelakantan P, Thiruvengadam C, Ramani P, Premkumar P, Natesan A, Herald JS, Luder HU (2011) Age estimation in an Indian population using pulp/tooth volume ratio of mandibular canines obtained from cone beam computed tomography. J Forensic Odontostomatol 29(1):1–6PubMedGoogle Scholar
  16. 16.
    Pinchi V, Pradella F, Buti J, Baldinotti C, Focardi M, Norelli GA (2015) A new age estimation procedure based on the 3D CBCT study of the pulp cavity and hard tissues of the teeth for forensic purposes: a pilot study. J Forensic Leg Med 36:150–157CrossRefPubMedGoogle Scholar
  17. 17.
    De Angelis D, Gaudio D, Guercini N, Cipriani F, Gibelli D, Caputi S, Cattaneo C (2015) Age estimation from canine volumes. Radiol Med 120(8):731–736CrossRefPubMedGoogle Scholar
  18. 18.
    Tardivo D, Sastre J, Ruquet M, Thollon L, Adalian P, Leonetti G, Foti B (2011) Three-dimensional modeling of the various volumes of canines to determine age and sex: a preliminary study. J Forensic Sci 56(3):766–770CrossRefPubMedGoogle Scholar
  19. 19.
    Tardivo D, Sastre J, Catherine JH, Leonetti G, Adalian P, Foti B (2014) Age determination of adult individuals by three-dimensional modelling of canines. Int J Legal Med 128(1):161–169CrossRefPubMedGoogle Scholar
  20. 20.
    Sakuma A, Saitoh H, Suzuki Y, Makino Y, Inokuchi G, Hayakawa M, Yajima D, Iwase H (2013) Age estimation based on pulp cavity to tooth volume ratio using postmortem computed tomography images. J Forensic Sci 58(6):1531–1535CrossRefPubMedGoogle Scholar
  21. 21.
    Vandevoort FM, Bergmans L, Van Cleynenbreugel J, Bielen DJ, Lambrechts P, Wevers M, Peirs A, Willems G (2004) Age calculation using X-ray microfocus computed tomographical scanning of teeth: a pilot study. J Forensic Sci 49(4):787–790CrossRefPubMedGoogle Scholar
  22. 22.
    Someda H, Saka H, Matsunaga S, Ide Y, Nakahara K, Hirata S, Hashimoto M (2009) Age estimation based on three-dimensional measurement of mandibular central incisors in Japanese. Forensic Sci Int 185(1-3):110–114CrossRefPubMedGoogle Scholar
  23. 23.
    Agematsu H, Someda H, Hashimoto M, Matsunaga S, Abe S, Kim HJ, Koyama T, Naito H, Ishida R, Ide Y (2010) Three-dimensional observation of decrease in pulp cavity volume using micro-CT: age-related change. Bull Tokyo Dent Coll 51(1):1–6CrossRefPubMedGoogle Scholar
  24. 24.
    Aboshi H, Takahashi T, Komuro T (2010) Age estimation using microfocus X-ray computed tomography of lower premolars. Forensic Sci Int 200(1-3):35–40CrossRefPubMedGoogle Scholar
  25. 25.
    Ge ZP, Ma RH, Li G, Zhang JZ, Ma XC (2015) Age estimation based on pulp chamber volume of first molars from cone-beam computed tomography images. Forensic Sci Int 253(133):e1–e7PubMedGoogle Scholar
  26. 26.
    Smith BG, Knight JK (1984) An index for measuring the wear of teeth. Br Dent J 156(12):435–438CrossRefPubMedGoogle Scholar
  27. 27.
    Chen LP, Zhang DH, Que ZN (2007) The investigation of tooth wear in1033 adult patients. J Clin Stomatol 23(3):170–172Google Scholar
  28. 28.
    Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128CrossRefPubMedGoogle Scholar
  29. 29.
    Peters OA, Laib A, Ruegsegger P, Barbakow F (2000) Three-dimensional analysis of root canal geometry by high-resolution computed tomography. J Dent Res 79(6):1405–1409CrossRefPubMedGoogle Scholar
  30. 30.
    Gantt DG, Kappleman J, Ketcham RA, Alder ME, Deahl TH (2006) Three-dimensional reconstruction of enamel thickness and volume in humans and hominoids. Eur J Oral Sci 114(Suppl 1):360–364, discussion 375-366, 382-363CrossRefPubMedGoogle Scholar
  31. 31.
    Wang Y, He S, Yu L, Li J, Chen S (2011) Accuracy of volumetric measurement of teeth in vivo based on cone beam computer tomography. Orthod Craniofac Res 14(4):206–212CrossRefPubMedGoogle Scholar
  32. 32.
    Kamiyama Y, Nakamura S, Abe T, Munakata M, Nomura Y, Watanabe H, Akiyama M, Kurabayashi T (2012) Linear measurement accuracy of dental CT images obtained by 64-slice multidetector row CT: the effects of mandibular positioning and pitch factor at CT scanning. Implant Dent 21(6):496–501CrossRefPubMedGoogle Scholar
  33. 33.
    Porto LV, Celestino da Silva Neto J, Anjos Pontual AD, Catunda RQ (2015) Evaluation of volumetric changes of teeth in a Brazilian population by using cone beam computed tomography. J Forensic Leg Med 36:4–9CrossRefPubMedGoogle Scholar
  34. 34.
    Awawdeh L, Abdullah H, Al-Qudah A (2008) Root form and canal morphology of Jordanian maxillary first premolars. J Endod 34(8):956–961CrossRefPubMedGoogle Scholar
  35. 35.
    Tian YY, Guo B, Zhang R, Yu X, Wang H, Hu T, Dummer PM (2012) Root and canal morphology of maxillary first premolars in a Chinese subpopulation evaluated using cone-beam computed tomography. Int Endod J 45(11):996–1003CrossRefPubMedGoogle Scholar
  36. 36.
    Ludlow JB, Ivanovic M (2008) Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(1):106–114CrossRefPubMedGoogle Scholar
  37. 37.
    Atar M, Korperich EJ (2010) Systemic disorders and their influence on the development of dental hard tissues: a literature review. J Dent 38(4):296–306CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhi-pu Ge
    • 1
  • Pan Yang
    • 1
  • Gang Li
    • 1
  • Ji-zong Zhang
    • 2
  • Xu-chen Ma
    • 1
  1. 1.Department of Oral and Maxillofacial RadiologyPeking University School and Hospital of StomatologyBeijingChina
  2. 2.Department of Forensic Pathology and AnthropologyInstitute of Forensic Sciences, Ministry of Public Security P.R.C.BeijingChina

Personalised recommendations