International Journal of Legal Medicine

, Volume 130, Issue 6, pp 1431–1438 | Cite as

A 17-month time course study of human RNA and DNA degradation in body fluids under dry and humid environmental conditions

  • Miriam Sirker
  • Peter M. Schneider
  • Iva Gomes
Original Article


Blood, saliva, and semen are some of the forensically most relevant biological stains commonly found at crime scenes, which can often be of small size or challenging due to advanced decay. In this context, it is of great importance to possess reliable knowledge about the effects of degradation under different environmental conditions and to use appropriate methods for retrieving maximal information from limited sample amount. In the last decade, RNA analysis has been demonstrated to be a reliable approach identifying the cell or tissue type of an evidentiary body fluid trace. Hence, messenger RNA (mRNA) profiling is going to be implemented into forensic casework to supplement the routinely performed short tandem repeat (STR) analysis, and therefore, the ability to co-isolate RNA and DNA from the same sample is a prerequisite. The objective of this work was to monitor and compare the degradation process of both nucleic acids for human blood, saliva, and semen stains at three different concentrations, exposed to dry and humid conditions during a 17-month time period. This study also addressed the question whether there are relevant differences in the efficiency of automated, magnetic bead-based single DNA or RNA extraction methods compared to a manually performed co-extraction method using silica columns. Our data show that mRNA, especially from blood and semen, can be recovered over the entire time period surveyed without compromising the success of DNA profiling; mRNA analysis indicates to be a robust and reliable technique to identify the biological source of aged stain material. The co-extraction method appears to provide mRNA and DNA of sufficient quantity and quality for all different forensic investigation procedures. Humidity and accompanied mold formation are detrimental to both nucleic acids.


Forensic science Body fluid identification mRNA profiling STR profiling Degradation DNA/RNA co-extraction 



This work was financially supported from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 285487 (EUROFORGEN-NoE). We would like to thank our volunteers for donating the biological samples for this study and Ana Freire Aradas for helpful discussions.

Supplementary material

414_2016_1373_MOESM1_ESM.pdf (675 kb)
ESM 1 (PDF 675 kb)
414_2016_1373_MOESM2_ESM.pdf (12 kb)
ESM 2 (PDF 12 kb)


  1. 1.
    Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17. doi: 10.1016/j.forsciint.2009.02.013 CrossRefPubMedGoogle Scholar
  2. 2.
    Alvarez M, Juusola J, Ballantyne J (2004) An mRNA and DNA co-isolation method for forensic casework samples. Anal Biochem 335:289–298. doi: 10.1016/j.ab.2004.09.002 CrossRefPubMedGoogle Scholar
  3. 3.
    Bauer M, Patzelt D (2003) A method for simultaneous RNA and DNA isolation from dried blood and semen stains. Forensic Sci Int 136:76–78. doi: 10.1016/S0379-0738(03)00219-6 CrossRefPubMedGoogle Scholar
  4. 4.
    Bowden A, Fleming R, Harbison S (2011) A method for DNA and RNA co-extraction for use on forensic samples using the Promega DNA IQTM system. Forensic Sci Int Genet 5:64–68. doi: 10.1016/j.fsigen.2009.11.007 CrossRefPubMedGoogle Scholar
  5. 5.
    Watanabe K, Iwashima Y, Akutsu T et al (2014) Evaluation of a co-extraction method for real-time PCR-based body fluid identification and DNA typing. Leg Med 16:56–59. doi: 10.1016/j.legalmed.2013.11.002 CrossRefGoogle Scholar
  6. 6.
    Juusola J, Ballantyne J (2005) Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int 152:1–12. doi: 10.1016/j.forsciint.2005.02.020 CrossRefPubMedGoogle Scholar
  7. 7.
    Fleming RI, Harbison S (2010) The development of a mRNA multiplex RT-PCR assay for the definitive identification of body fluids. Forensic Sci Int Genet 4:244–256. doi: 10.1016/j.fsigen.2009.10.006 CrossRefPubMedGoogle Scholar
  8. 8.
    Lindenbergh A, de Pagter M, Ramdayal G et al (2012) A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces. Forensic Sci Int Genet 6:565–577. doi: 10.1016/j.fsigen.2012.01.009 CrossRefPubMedGoogle Scholar
  9. 9.
    Haas C, Klesser B, Maake C et al (2009) mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci Int Genet 3:80–88. doi: 10.1016/j.fsigen.2008.11.003 CrossRefPubMedGoogle Scholar
  10. 10.
    Nussbaumer C, Gharehbaghi-Schnell E, Korschineck I (2006) Messenger RNA profiling: a novel method for body fluid identification by real-time PCR. Forensic Sci Int 157:181–186. doi: 10.1016/j.forsciint.2005.10.009 CrossRefPubMedGoogle Scholar
  11. 11.
    Haas C, Hanson E, Kratzer A et al (2011) Selection of highly specific and sensitive mRNA biomarkers for the identification of blood. Forensic Sci Int Genet 5:449–458. doi: 10.1016/j.fsigen.2010.09.006 CrossRefPubMedGoogle Scholar
  12. 12.
    Haas C, Hanson E, Bär W et al (2011) mRNA profiling for the identification of blood—results of a collaborative EDNAP exercise. Forensic Sci Int Genet 5:21–26. doi: 10.1016/j.fsigen.2010.01.003 CrossRefPubMedGoogle Scholar
  13. 13.
    Haas C, Hanson E, Anjos MJ et al (2012) RNA/DNA co-analysis from blood stains—results of a second collaborative EDNAP exercise. Forensic Sci Int Genet 6:70–80. doi: 10.1016/j.fsigen.2011.02.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Haas C, Hanson E, Anjos MJ et al (2013) RNA/DNA co-analysis from human saliva and semen stains—results of a third collaborative EDNAP exercise. Forensic Sci Int Genet 7:230–239. doi: 10.1016/j.fsigen.2012.10.011 CrossRefPubMedGoogle Scholar
  15. 15.
    Haas C, Hanson E, Anjos MJ et al (2014) RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: results of a fourth and fifth collaborative EDNAP exercise. Forensic Sci Int Genet 8:203–212. doi: 10.1016/j.fsigen.2013.09.009 CrossRefPubMedGoogle Scholar
  16. 16.
    Visser M, Zubakov D, Ballantyne KN, Kayser M (2011) mRNA-based skin identification for forensic applications. Int J Legal Med 125:253–263. doi: 10.1007/s00414-010-0545-2 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fang R, Manohar CF, Shulse C et al (2006) Real-time PCR assays for the detection of tissue and body fluid specific mRNAs. Int Congr Ser 1288:685–687. doi: 10.1016/j.ics.2005.10.064 CrossRefGoogle Scholar
  18. 18.
    Hanson EK, Ballantyne J (2010) RNA profiling for the identification of the tissue origin of dried stains in forensic biology. Forensic Sci Rev 22:145–157PubMedGoogle Scholar
  19. 19.
    Kohlmeier F, Schneider PM (2012) Successful mRNA profiling of 23 years old blood stains. Forensic Sci Int Genet 6:274–276. doi: 10.1016/j.fsigen.2011.04.007 CrossRefPubMedGoogle Scholar
  20. 20.
    Setzer M, Juusola J, Ballantyne J (2008) Recovery and stability of RNA in vaginal swabs and blood, semen, and saliva stains. J Forensic Sci 53:296–305. doi: 10.1111/j.1556-4029.2007.00652.x CrossRefPubMedGoogle Scholar
  21. 21.
    Bauer M, Polzin S, Patzelt D (2003) Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int 138:94–103CrossRefPubMedGoogle Scholar
  22. 22.
    Zubakov D, Hanekamp E, Kokshoorn M et al (2008) Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int J Legal Med 122:135–142. doi: 10.1007/s00414-007-0182-6 CrossRefPubMedGoogle Scholar
  23. 23.
    Zubakov D, Kokshoorn M, Kloosterman A, Kayser M (2009) New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int J Legal Med 123:71–74. doi: 10.1007/s00414-008-0249-z CrossRefPubMedGoogle Scholar
  24. 24.
    Nakanishi H, Hara M, Takahashi S et al (2014) Evaluation of forensic examination of extremely aged seminal stains. Leg Med Tokyo Jpn 16:303–307. doi: 10.1016/j.legalmed.2014.04.002 CrossRefGoogle Scholar
  25. 25.
    Levings PP, Bungert J (2002) The human beta-globin locus control region. Eur J Biochem FEBS 269:1589–1599CrossRefGoogle Scholar
  26. 26.
    Chu ZL, Wickrema A, Krantz SB, Winkelmann JC (1994) Erythroid-specific processing of human beta spectrin I pre-mRNA. Blood 84:1992–1999PubMedGoogle Scholar
  27. 27.
    Sabatini LM, Ota T, Azen EA (1993) Nucleotide sequence analysis of the human salivary protein genes HIS1 and HIS2, and evolution of the STATH/HIS gene family. Mol Biol Evol 10:497–511PubMedGoogle Scholar
  28. 28.
    Sabatini LM, Azen EA (1989) Histatins, a family of salivary histidine-rich proteins, are encoded by at least two loci (HIS1 and HIS2). Biochem Biophys Res Commun 160:495–502CrossRefPubMedGoogle Scholar
  29. 29.
    Bauer M, Patzelt D (2003) Protamine mRNA as molecular marker for spermatozoa in semen stains. Int J Legal Med 117:175–179. doi: 10.1007/s00414-002-0347-2 PubMedGoogle Scholar
  30. 30.
    Steger K, Pauls K, Klonisch T et al (2000) Expression of protamine-1 and -2 mRNA during human spermiogenesis. Mol Hum Reprod 6:219–225CrossRefPubMedGoogle Scholar
  31. 31.
    Juusola J, Ballantyne J (2003) Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int 135:85–96CrossRefPubMedGoogle Scholar
  32. 32.
    Fordyce SL, Kampmann M-L, van Doorn NL, Gilbert MTP (2013) Long-term RNA persistence in postmortem contexts. Investig Genet 4:7. doi: 10.1186/2041-2223-4-7 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lin M-H, Albani PP, Fleming R (2016) Degraded RNA transcript stable regions (StaRs) as targets for enhanced forensic RNA body fluid identification. Forensic Sci Int Genet 20:61–70. doi: 10.1016/j.fsigen.2015.09.012 CrossRefPubMedGoogle Scholar
  34. 34.
    Hall A, Sims LM, Ballantyne J (2014) Assessment of DNA damage induced by terrestrial UV irradiation of dried bloodstains: Forensic implications. Forensic Sci Int Genet 8:24–32. doi: 10.1016/j.fsigen.2013.06.010 CrossRefPubMedGoogle Scholar
  35. 35.
    Hall A, Ballantyne J (2004) Characterization of UVC-induced DNA damage in bloodstains: forensic implications. Anal Bioanal Chem 380:72–83. doi: 10.1007/s00216-004-2681-3 CrossRefPubMedGoogle Scholar
  36. 36.
    Dissing J, Søndervang A, Lund S (2010) Exploring the limits for the survival of DNA in blood stains. J Forensic Leg Med 17:392–396. doi: 10.1016/j.jflm.2010.08.001 CrossRefPubMedGoogle Scholar
  37. 37.
    Akutsu T, Kitayama T, Watanabe K, Sakurada K (2015) Comparison of automated and manual purification of total RNA for mRNA-based identification of body fluids. Forensic Sci Int Genet 14:11–17. doi: 10.1016/j.fsigen.2014.09.007 CrossRefPubMedGoogle Scholar
  38. 38.
    Grabmüller M, Madea B, Courts C (2015) Comparative evaluation of different extraction and quantification methods for forensic RNA analysis. Forensic Sci Int Genet 16:195–202. doi: 10.1016/j.fsigen.2015.01.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Legal Medicine, Faculty of MedicineUniversity of CologneCologneGermany

Personalised recommendations