International Journal of Legal Medicine

, Volume 130, Issue 1, pp 207–211 | Cite as

Age estimation based on aspartic acid racemization in human sclera

  • Karolin Klumb
  • Christian Matzenauer
  • Alexandra Reckert
  • Klaus Lehmann
  • Stefanie Ritz-Timme
Original Article


Age estimation based on racemization of aspartic acid residues (AAR) in permanent proteins has been established in forensic medicine for years. While dentine is the tissue of choice for this molecular method of age estimation, teeth are not always available which leads to the need to identify other suitable tissues. We examined the suitability of total tissue samples of human sclera for the estimation of age at death. Sixty-five samples of scleral tissue were analyzed. The samples were hydrolyzed and after derivatization, the extent of aspartic acid racemization was determined by gas chromatography. The degree of AAR increased with age. In samples from younger individuals, the correlation of age and d-aspartic acid content was closer than in samples from older individuals. The age-dependent racemization in total tissue samples proves that permanent or at least long-living proteins are present in scleral tissue. The correlation of AAR in human sclera and age at death is close enough to serve as basis for age estimation. However, the precision of age estimation by this method is lower than that of age estimation based on the analysis of dentine which is due to molecular inhomogeneities of total tissue samples of sclera. Nevertheless, the approach may serve as a valuable alternative or addition in exceptional cases.


Age estimation Aspartic acid racemization Sclera 


  1. 1.
    Helfman PM, Bada JL (1975) Aspartic acid racemization in tooth enamel from living humans. Proc Natl Acad Sci U S A 72:2891–2894PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Arany S, Ohtani S, Yoshioka N, Gonmori K (2004) Age estimation from aspartic acid racemization of root dentin by internal standard method. Forensic Sci Int 141:127–130PubMedCrossRefGoogle Scholar
  3. 3.
    Ohtani S (1995) Estimation of age from dentin by using the racemization reaction of aspartic acid. Am J Forensic Med Pathol 16:158–161PubMedCrossRefGoogle Scholar
  4. 4.
    Ritz S, Schütz HW, Peper C (1993) Postmortem estimation of age at death based on aspartic acid racemization in dentin: its applicability for root dentin. Int J Legal Med 105:289–293PubMedCrossRefGoogle Scholar
  5. 5.
    Ohtani S, Yamamoto K (1991) Age estimation using the racemization of amino acid in human dentin. J Forensic Sci 36:792–800PubMedCrossRefGoogle Scholar
  6. 6.
    Ohtani S (1994) Age estimation by aspartic acid racemization in dentin of deciduous teeth. Forensic Sci Int 68:77–82PubMedCrossRefGoogle Scholar
  7. 7.
    Ritz S, Stock R, Schütz HW, Kaatsch HJ (1995) Age estimation in biopsy specimens of dentin. Int J Legal Med 108:135–139PubMedCrossRefGoogle Scholar
  8. 8.
    Fu S-J, Fan C-C, Song H-W, Wie F-Q (1995) Age estimation using a modified HPLC determination of ratio of aspartic acid in dentin. Forensic Sci Int 73:35–40PubMedCrossRefGoogle Scholar
  9. 9.
    Ohtani S, Yamamoto K (1992) Estimation of age from a tooth by means of racemization of an amino acid, especially aspartic acid—comparison of enamel and dentin. J Forensic Sci 37:1061–1067PubMedCrossRefGoogle Scholar
  10. 10.
    Ohtani S, Sugimoto H, Sugeno H, Yamamoto S, Yamamoto K (1995) Racemization of aspartic acid in human cementum with age. Arch Oral Biol 40:91–95PubMedCrossRefGoogle Scholar
  11. 11.
    Ritz S, Schütz HW (1993) Aspartic acid racemization in intervertebral discs as an aid to postmortem estimation of age at death. J Forensic Sci 38:633–640PubMedCrossRefGoogle Scholar
  12. 12.
    Conrad J-S (1999) Nutzbarkeit des Razemisierungsgrades von Asparaginsäure als Parameter zur Qualitätsbeurteilung von Corneatransplantaten. Dissertation, Christian-Albrechts-Universität zu KielGoogle Scholar
  13. 13.
    Matzenauer C, Reckert A, Ritz-Timme S (2014) Estimation of age at death based on aspartic acid racemization in elastic cartilage of the epiglottis. Int J Legal Med 128:995–1000PubMedCrossRefGoogle Scholar
  14. 14.
    Ritz S, Turzynski A, Schütz HW, Hollmann A, Rochholz G (1996) Identification of osteocalcin as a permanent aging constituent of the bone matrix: basis for an accurate age at death determination. Forensic Sci Int 77:13–26PubMedCrossRefGoogle Scholar
  15. 15.
    Ritz-Timme S, Laumeier I, Collins MJ (2003) Aspartic acid racemization: evidence for marked longevity of elastin in human skin. Br J Dermatol 149:951–959PubMedCrossRefGoogle Scholar
  16. 16.
    Ritz-Timme S, Laumeier I, Collins M (2003) Age estimation based on aspartic acid racemization in elastin from the yellow ligaments. Int J Legal Med 117:96–101PubMedGoogle Scholar
  17. 17.
    Dobberstein RC, Tung S-M, Ritz-Timme S (2010) Aspartic acid racemisation in purified elastin from arteries as basis for age estimation. Int J Legal Med 124:269–275PubMedCrossRefGoogle Scholar
  18. 18.
    Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schütz HW, Kaatsch HJ, Borrman HIM (2000) Age estimation: the state of the art in relation to the specific demands of forensic practise. Int J Legal Med 113:129–136PubMedCrossRefGoogle Scholar
  19. 19.
    Ohtani S, Yamagishi M, Ogasawara M, Yamamoto K (1990) Age estimation of two unidentified bodies by amino acid racemization in their teeth. Bull Kanagawa Dent Coll 18:23–27PubMedGoogle Scholar
  20. 20.
    Ohtani S, Utsunomiya J, Minoshima T, Yamamoto K (1994) Tooth-based age estimation of an adipocerated cadaver using the amino acid racemization method. Nihon Hoigaku Zasshi 48:279–281PubMedGoogle Scholar
  21. 21.
    Ohtani S, Yamamoto T (2010) Age estimation by amino acid racemization in human teeth. J Forensic Sci 55:1630–1633PubMedCrossRefGoogle Scholar
  22. 22.
    Watson PG, Young RD (2004) Scleral structure, organisation and disease. A review. Exp Eye Res 78:609–623PubMedCrossRefGoogle Scholar
  23. 23.
    Ritz-Timme S (1999) Lebensaltersbestimmung aufgrund des razemisierungsgrades von asparaginsäure: grundlagen, methodik, möglichkeiten, grenzen, anwendungsbereiche. In: Berg S, Brinkmann B (eds) Arbeitsmethoden der medizinischen und naturwissenschaftlichen Kriminalistik, vol 23. Verlag Schmidt Römhild, LübeckGoogle Scholar
  24. 24.
    Bada JL, Schroeder RA (1975) Amino acid racemization reactions and their geochemical implications. Naturwissenschaften 62:71–79CrossRefGoogle Scholar
  25. 25.
    Ritz-Timme S, Collins MJ (2002) Racemization of aspartic acid in human proteins. Ageing Res Rev 1:43–59PubMedCrossRefGoogle Scholar
  26. 26.
    Masters PM, Bada JL, Zigler JS Jr (1977) Aspartic acid racemisation in the human lens during ageing and in cataract formation. Nature 268:71–73PubMedCrossRefGoogle Scholar
  27. 27.
    Collins MJ, Waite ER, van Duin ACT (1999) Predicting protein decompostion: the case of aspartic-acid racemization kinetics. Philos Trans R Soc Lond B Biol Sci 354:51–64PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Fedarko NS (1993) Isolation and purification of proteoglycans. Experientia 49:369–383PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Karolin Klumb
    • 1
  • Christian Matzenauer
    • 1
  • Alexandra Reckert
    • 1
  • Klaus Lehmann
    • 2
  • Stefanie Ritz-Timme
    • 1
  1. 1.Institute of Forensic Medicine, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
  2. 2.Department of Natural SciencesBonn-Rhein-Sieg University of Applied SciencesRheinbachGermany

Personalised recommendations