Advertisement

International Journal of Legal Medicine

, Volume 130, Issue 2, pp 489–499 | Cite as

Obtaining appropriate interval estimates for age when multiple indicators are used: evaluation of an ad-hoc procedure

  • Steffen Fieuws
  • Guy Willems
  • Sara Larsen-Tangmose
  • Niels Lynnerup
  • Jesper Boldsen
  • Patrick Thevissen
Original Article

Abstract

When an estimate of age is needed, typically multiple indicators are present as found in skeletal or dental information. There exists a vast literature on approaches to estimate age from such multivariate data. Application of Bayes’ rule has been proposed to overcome drawbacks of classical regression models but becomes less trivial as soon as the number of indicators increases. Each of the age indicators can lead to a different point estimate (“the most plausible value for age”) and a prediction interval (“the range of possible values”). The major challenge in the combination of multiple indicators is not the calculation of a combined point estimate for age but the construction of an appropriate prediction interval. Ignoring the correlation between the age indicators results in intervals being too small. Boldsen et al. (2002) presented an ad-hoc procedure to construct an approximate confidence interval without the need to model the multivariate correlation structure between the indicators. The aim of the present paper is to bring under attention this pragmatic approach and to evaluate its performance in a practical setting. This is all the more needed since recent publications ignore the need for interval estimation. To illustrate and evaluate the method, Köhler et al. (1995) third molar scores are used to estimate the age in a dataset of 3200 male subjects in the juvenile age range.

Keywords

Forensic dentistry Multiple age indicators Validation procedure 

References

  1. 1.
    Gunst K, Mesotten K, Carbonez A, Willems G (2003) Third molar root development in relation to chronological age: a large sample sized retrospective study. Forensic Sci Int 136:52–57CrossRefPubMedGoogle Scholar
  2. 2.
    Aykroyd R, Lucy D, Pollard A, Roberts C (1999) Nasty, brutish, but not necessarily short: a reconsideration of the statistical methods used to calculate age at death from adult human skeletal and dental indicators. Am Antiq 64:55–70CrossRefGoogle Scholar
  3. 3.
    Lucy D, Aykroyd RG, Pollard AM (2002) Non-parametric calibration for age estimation. Appl Stat 52:185–196Google Scholar
  4. 4.
    Thevissen PW, Fieuws S, Willems G (2010) Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults? Int J Legal Med 124:35–42CrossRefPubMedGoogle Scholar
  5. 5.
    Aykroyd RG, Lucy D, Pollard AM, Solheim T (1997) Technical note: regression analysis in adult age estimation. Am J Phys Anthropol 104:259–265CrossRefPubMedGoogle Scholar
  6. 6.
    Hoppa RD, Vaupel JW (2002) Paleodemography. Age distributions from skeletal samples. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. 7.
    Samworth R, Gowland R (2007) Estimation of adult skeletal age-at-death: statistical assumptions and applications. Int J Osteoarchaeol 17:174–188CrossRefGoogle Scholar
  8. 8.
    Calce S, Rogers T (2011) Evaluation of age estimation technique: testing traits of the acetabulum to estimate age at death in adult males. J Forensic Sci 56(302):311Google Scholar
  9. 9.
    Schmeling A, Olze A, Reisinger W, Geserick G (2001) Age estimation of living people undergoing criminal proceedings. 23001 (Lancet)Google Scholar
  10. 10.
    Schmeling A, Grundmann C, Fuhrmann A, Kaatsch H, Knell B, Ramsthaler F et al (2008) Criteria for age estimation in living individuals. Int J Legal Med 122(6):457–460CrossRefPubMedGoogle Scholar
  11. 11.
    Cole TJ (2008) Hot potato topic [letter to the editor]. Br Dent J 205:581–582CrossRefPubMedGoogle Scholar
  12. 12.
    Roberts GJ, Parekh S, Petrie A, Lucas VS (2008) Dental age assessment (DAA): a simple method for children and emerging adults. Br Dent J 204(4):E7CrossRefPubMedGoogle Scholar
  13. 13.
    Boldsen JL, Milner GR, Konigsberg LW, Wood JW (2002) Transition analysis: a new method for estimating age from skeletons. In: Hoppa RD, Vaupel JW (eds) Paleodemography: age distributions from skeletal samples. Cambridge University Press, Cambridge, pp 73–106CrossRefGoogle Scholar
  14. 14.
    Thevissen PW (2013) Dental age estimation in sub-adults: striving for an optimal approach. Leuven University Press, LeuvenGoogle Scholar
  15. 15.
    Köhler S, Schmelzl RL, Püschel K (1994) Development of wisdom teeth as a criterion of age determination. Ann Anat 176:339–345CrossRefPubMedGoogle Scholar
  16. 16.
    Cole TJ (1990) The LMS method for constructing normalized growth standards. Eur J Clin Nutr 44(1):45–60PubMedGoogle Scholar
  17. 17.
    Aykroyd R, Lucy D, Pollard A, Solheim T (1997) Technical note: regression analysis in adult age estimation. Am J Phys Anthropol 104:259–265CrossRefPubMedGoogle Scholar
  18. 18.
    Harrell F (2001) Regression modeling strategies. Springer, New-YorkCrossRefGoogle Scholar
  19. 19.
    Agresti A (1990) Categorical data analysis. Wiley, New YorkGoogle Scholar
  20. 20.
    Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22CrossRefGoogle Scholar
  21. 21.
    Cox DR, Hinkley DV (1974) Theoretical statistics. Chapman & Hall, LondonCrossRefGoogle Scholar
  22. 22.
    DiGangi EA, Bethard JD, Kimmerle EH, Konigsberg LW (2009) A new method for estimating age-at-death from the first rib. Am J Phys Anthropol 138:164–176CrossRefPubMedGoogle Scholar
  23. 23.
    Kimmerle EH, Konigsberg LW, Jantz RL, Baraybar JP (2008) Analysis of age-at-death through the use of pubic symphyseal data. J Forensic Sci 53:558–568CrossRefPubMedGoogle Scholar
  24. 24.
    Milner GR, Boldsen JL (2012) Transition analysis: a validation study with known-age modern American skeletons. Am J Phys Anthropol 148:98–110CrossRefPubMedGoogle Scholar
  25. 25.
    Roberts GJ, McDonald F, Neil M, Lucas VM (2014) The weighted average method “WAM” for dental age estimation: a simpler method for children at the 10 year threshold. J Forensic Leg Med 26:56–60CrossRefPubMedGoogle Scholar
  26. 26.
    Fieuws S, Willems G, Thevissen P (2015) Letter to the Editor regarding the article by Roberts, et al. published in volume 26, August 2014 Journal of Forensic and Legal Medicine. J Forensic Leg Med 29:24CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Steffen Fieuws
    • 1
  • Guy Willems
    • 2
  • Sara Larsen-Tangmose
    • 3
  • Niels Lynnerup
    • 3
  • Jesper Boldsen
    • 4
  • Patrick Thevissen
    • 2
  1. 1.Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat)LeuvenBelgium
  2. 2.Department of Oral Health Sciences, KU Leuven & DentistryUniversity Hospitals LeuvenLeuvenBelgium
  3. 3.Department of Forensic MedicineUniversity of CopenhagenCopenhagenDenmark
  4. 4.Department of Anthropology (ADBOU), Institute of Forensic MedicineUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations