International Journal of Legal Medicine

, Volume 129, Issue 4, pp 825–831 | Cite as

Magnetic resonance imaging of distal tibia and calcaneus for forensic age estimation in living individuals

  • Oguzhan Ekizoglu
  • Elif Hocaoglu
  • Ismail Ozgur Can
  • Ercan Inci
  • Sema Aksoy
  • Mustafa Gokhan Bilgili
Original Article


In recent years, methods by which to decrease radiation exposure during age estimation have gained importance and become a main research area in the forensic sciences. Imaging tools such as X-ray and computed tomography (CT) are accepted as the main diagnostic methods for evaluation of the epiphysis in living individuals; however, radiation exposure and superimposition are the main disadvantages of these techniques. Magnetic resonance (MR) imaging provides an advantage in terms of preventing radiation exposure. In this study, we performed an MR analysis of the degree of fusion of the distal tibia and calcaneal epiphysis and investigated the utility of this technique in the Turkish population. Using the three-stage method described by Saint-Martin et al., we retrospectively evaluated 167 MR images (97 males, 70 females; mean age, 17.7 ± 4.8 years for males and 17.6 ± 4.9 years for females; age range of all subjects, 8–25 years). Intraobserver and interobserver evaluation showed good repeatability and consistency of this method. Stages 2 and 3 ossification of the distal tibial epiphysis first occurred at age 14 and 15 years in males and 12 and 14 years in females, respectively. Stages 2 and 3 ossification of the calcaneal epiphysis first occurred at age 14 and 16 years in males and 10 and 12 years in females, respectively. When performed alone, MR analysis of the distal tibial and calcaneal epiphysis offers limited information for forensic age estimation. However, we suggest that MR analysis can be used as a supportive method when it is necessary to avoid repeated radiation exposure.


Forensic age estimation Magnetic resonance imaging Tibia Calcaneus 


  1. 1.
    Laura Janes. Criminal liability of minors and severity of penalties: European trends and developments. Howard League for Penal Reform (England and Wales), 2008. Accessed: 21 March 2014
  2. 2.
    Ritz-Timme S, Cattaneo C, Waite Collins ER, Schutz HW, Kaatsch HJ, Borrman HI (2000) Age estimation: the state of the art in relation to the specific demands of forensic practise. Int J Legal Med 113:129–136. doi: 10.1007/s004140050283 PubMedCrossRefGoogle Scholar
  3. 3.
    Schmeling A, Garamendi PM, Prieto JL, Landa MI (2011) Forensic age estimation in unaccompanied minors and young living adults. In: Duarte NV (ed) Forensic medicine—from old problems to new challenges. InTech, Rijeka, pp 77–120, Accessed: 30 October 2014
  4. 4.
    Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rösing FW, Rötzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122(6):457–460. doi: 10.1007/s00414-008-0254-2 PubMedCrossRefGoogle Scholar
  5. 5.
    Quirmbach F, Ramsthaler F, Verhoff MA (2009) Evaluation of the ossification of the medial clavicular epiphysis with a digital ultrasonic system to determine the age threshold of 21 years. Int J Legal Med 123:241–245. doi: 10.1007/s00414-009-0335-x PubMedCrossRefGoogle Scholar
  6. 6.
    Schmidt S, Schmeling A, Zwiesigk P, Pfeiffer H, Schulz R (2011) Sonographic evaluation of apophyseal ossification of the iliac crest in forensic age diagnostics in living individuals. Int J Legal Med 125:271–276. doi: 10.1007/s00414-011-0554-9 PubMedCrossRefGoogle Scholar
  7. 7.
    Schmidt S, Schiborr M, Pfeiffer H, Schmeling A, Schulz R (2013) Age dependence of epiphyseal ossification of the distal radius in ultrasound diagnostics. Int J Legal Med 127:831–838. doi: 10.1007/s00414-013-0871-2 PubMedCrossRefGoogle Scholar
  8. 8.
    Gonsior M, Ramsthaler F, Gehl A, Verhoff MA (2013) Morphology as a cause for different classification of the ossification stage of the medial clavicular epiphysis by ultrasound, computed tomography, and macroscopy. Int J Legal Med 127:1013–1021. doi: 10.1007/s00414-013-0889-5 PubMedCrossRefGoogle Scholar
  9. 9.
    Schmidt S, Mühler M, Schmeling A, Reisinger W, Schulz R (2007) Magnetic resonance imaging of the clavicular ossification. Int J Legal Med 121:321–324. doi: 10.1007/s00414-007-0160-z PubMedCrossRefGoogle Scholar
  10. 10.
    Tangmose S, Jensen KE, Villa C, Lynnerup N (2014) Forensic age estimation from the clavicle using 1.0 T MRI—preliminary results. Forensic Sci Int 234:7–12. doi: 10.1016/j.forsciint.2013.10.027 PubMedCrossRefGoogle Scholar
  11. 11.
    Hillewig E, Degroote J, Van der Paelt T, Visscher A, Vandemaele P, Lutin B, D’Hooghe L, Vandriessche V, Piette M, Verstraete K (2013) Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int J Legal Med 127(3):677–689. doi: 10.1007/s00414-012-0798-z PubMedCrossRefGoogle Scholar
  12. 12.
    Vieth V, Schulz R, Brinkmeier P, Dvorak J, Schmeling A (2014) Age estimation in U-20 football players using 3.0 tesla MRI of the clavicle. Forensic Sci Int 241:118–122. doi: 10.1016/j.forsciint.2014.05.008 PubMedCrossRefGoogle Scholar
  13. 13.
    Saint-Martin P, Rérolle C, Dedouit F, Bouilleau L, Rousseau H, Rougé D, Telmon N (2013) Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum. Int J Legal Med 127(5):1023–1030. doi: 10.1007/s00414-013-0844-5 PubMedCrossRefGoogle Scholar
  14. 14.
    Saint-Martin P, Rérolle C, Dedouit F, Rousseau H, Rougé D, Telmon N (2014) Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year threshold. Int J Legal Med 128(4):675–683. doi: 10.1007/s00414-014-0987-z PubMedCrossRefGoogle Scholar
  15. 15.
    Krämer JA, Schmidt S, Jürgens KU, Lentschig M, Schmeling A, Vieth V (2014) The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol 10(3):306–313. doi: 10.1007/s12024-014-9559-2 PubMedCrossRefGoogle Scholar
  16. 16.
    Wittschieber D, Vieth V, Timme M, Dvorak J, Schmeling A (2014) Magnetic resonance imaging of the iliac crest: age estimation in under-20 soccer players. Forensic Sci Med Pathol 10(2):198–202. doi: 10.1007/s12024-014-9548-5 PubMedCrossRefGoogle Scholar
  17. 17.
    Dvorak J, George J, Junge A, Hodler J (2007) Application of MRI of the wrist for age determination in international U-17 soccer competitions. Br J Sports Med 41(8):497–500. doi: 10.1136/bjsm.2006.033431
  18. 18.
    Krämer JA, Schmidt S, Jürgens KU, Lentschig M, Schmeling A, Vieth V (2014) Forensic age estimation in living individuals using 3.0 T MRI of the distal femur. Int J Legal Med 128(3):509–514. doi: 10.1007/s00414-014-0967-3 PubMedCrossRefGoogle Scholar
  19. 19.
    Dedouit F, Auriol J, Rousseau H, Rougé D, Crubézy E, Telmon N (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217:e1–e7. doi: 10.1016/j.forsciint.2011.11.013 PubMedCrossRefGoogle Scholar
  20. 20.
    Saint-Martin P, Rérolle C, Pucheux J, Dedouit F, Telmon N (2014) Contribution of distal femur MRI to the determination of the 18-year limit in forensic age estimation. Int J Legal Med. doi: 10.1007/s00414-014-1020-2 Google Scholar
  21. 21.
    Hoerr NL, Pyle SI, Francis CC (1962) Radiographic atlas of skeletal development of the foot and ankle: a standard of reference. Thomas, Springfield, ILGoogle Scholar
  22. 22.
    Crowder C, Austin D (2005) Age ranges of epiphyseal fusion in the distal tibia and fibula of contemporary males and females. J Forensic Sci 50:1001–1007. doi: 10.1520/JFS2004542 PubMedCrossRefGoogle Scholar
  23. 23.
    Flecker H (1932) Roentgenographic observations of the times of appearance of epiphyses and their fusion with the diaphyses. J Anat 67(Pt 1):118–164PubMedCentralPubMedGoogle Scholar
  24. 24.
    Ogden JA, McCarthy SM (1983) Radiology of postnatal skeletal development VIII. Distal tibia and fibula. Skelet Radiol 10(4):209–220. doi: 10.1016/j.mehy.2013.07.029 CrossRefGoogle Scholar
  25. 25.
    Banerjee KK, Agarwal BB (1998) Estimation of age from epiphyseal union at the wrist and ankle joints in the capital city of India. Forensic Sci Int 98:31–39. doi: 10.1016/S0379-0738(98)00134-0 PubMedCrossRefGoogle Scholar
  26. 26.
    Scheuer L, Black SM (2000) Developmental juvenile osteology. Elsevier Academic Press, AmsterdamGoogle Scholar
  27. 27.
    Altman DG (1991) Practical statistics for medical research. Chapman& Hall, New YorkGoogle Scholar
  28. 28.
    McKern TW, Stewart TD (1957) Skeletal age changes in young American males analyzed from the standpoint of age determination. Technical Report EP-45. Environmental Protection Research Division, HQ=Quartermaster Research and Development Command, United States Army, Natick, MAGoogle Scholar
  29. 29.
    Patond S, Tirpude B, Murkey P, Wankhade P, Nagrale N, Surwade V (2012) Age determination from epiphyseal union of bones at ankle joint in girls of central India. J Forensic Med Sci Law 21(2):11–17Google Scholar
  30. 30.
    Cardoso HF (2008) Epiphyseal union at the innominate and lower limb in a modern Portuguese skeletal sample, and age estimation in adolescent and young adult male and female skeletons. Am J Phys Anthropol 135:161–170. doi: 10.1002/ajpa.20717 PubMedCrossRefGoogle Scholar
  31. 31.
    Coqueugniot H, Weaver TD (2007) Brief communication: infracranial maturation in the skeletal collection from Coimbra, Portugal: new aging standards for epiphyseal union. Am J Phys Anthropol 134:424–437. doi: 10.1002/ajpa.20683 PubMedCrossRefGoogle Scholar
  32. 32.
    Pradeep B, Chowdhary DS, Tirpude BH, Bharat S, Vandana W, Aaditya T (2010) Age determination in girls of Jodhpur region by epiphyseal union of bones at ankle joint. J Indian Acad Forensic Med 32(1):42–45Google Scholar
  33. 33.
    United Nations Development Programme, Human Development Reports 2014. Accessed: 15 January 2014.
  34. 34.
    Schmeling A, Reisinger W, Loreck D, Vendura K, Markus W, Geserick G (2000) Effects of ethnicity on skeletal maturation: consequences for forensic age estimations. Int J Leg Med 113:253–258. doi: 10.1007/s004149900102 CrossRefGoogle Scholar
  35. 35.
    Schmeling A, Olze A, Reisinger W, Geserick G (2005) Forensic age estimation and ethnicity. Leg Med 7:134–137. doi: 10.1016/j.legalmed.2004.07.004 CrossRefGoogle Scholar
  36. 36.
    Wittschieber D, Schulz R, Vieth V, Küppers M, Bajanowski T, Ramsthaler F, Püschel K, Pfeiffer H, Schmidt S, Schmeling A (2014) Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography. Int J Legal Med 128(1):183–191. doi: 10.1007/s00414-013-0932-6 PubMedCrossRefGoogle Scholar
  37. 37.
    Taybi H, Lachman RS (1990) Radiology of syndromes, metabolic disorders and skeletal dysplasias, 3rd edn. Year Book Medical Publishers, ChicagoGoogle Scholar
  38. 38.
    Tanner JM (1966) The secular trend towards earlier maturation. T Soc Geneesk 44:524–538Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Oguzhan Ekizoglu
    • 1
  • Elif Hocaoglu
    • 2
  • Ismail Ozgur Can
    • 3
  • Ercan Inci
    • 2
  • Sema Aksoy
    • 2
  • Mustafa Gokhan Bilgili
    • 4
  1. 1.Tepecik Training and Research HospitalIzmirTurkey
  2. 2.Department of RadiologyBakirkoy Dr. Sadi Konuk Training and Research HospitalIstanbulTurkey
  3. 3.Department of Forensic Medicine, Faculty of MedicineDokuz Eylul UniversityIzmirTurkey
  4. 4.Department of OrthopedicsBakirkoy Dr. Sadi Konuk Training and Research HospitalIstanbulTurkey

Personalised recommendations