Advertisement

International Journal of Legal Medicine

, Volume 129, Issue 2, pp 237–244 | Cite as

Age-related DNA methylation changes for forensic age-prediction

  • Shao Hua Yi
  • Yun Shu Jia
  • Kun Mei
  • Rong Zhi Yang
  • Dai Xin Huang
Original Article

Abstract

There is no available method of age-prediction for biological samples. The accumulating evidences indicate that DNA methylation patterns change with age. Aging resembles a developmentally regulated process that is tightly controlled by specific epigenetic modifications and age-associated methylation changes exist in human genome. In this study, three age-related methylation fragments were isolated and identified in blood of 40 donors. Age-related methylation changes with each fragment was validated and replicated in a general population sample of 65 donors over a wide age range (11–72 years). Methylation of these fragments is linearly correlated with age over a range of six decades (r = 0.80–0.88). Using average methylation of CpG sites of three fragments, a regression model that explained 95 % of the variance in age was built and is able to predict an individual’s age with great accuracy (R 2 = 0.93). The predicted value is highly correlated with the observed age in the sample (r = 0.96) and has great accuracy of average 4 years difference between predicted age and true age. This study implicates that DNA methylation can be an available biological marker of age-prediction. Further measurement of relevant markers in the genome could be a tool in routine screening to predict age of forensic biological samples.

Keywords

DNA methylation Age-prediction Forensic markers Human blood 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 30772291, 81373250, and 81202386), the Natural Science Foundation of Hubei Province (No. 2010CDB03201), and the Fundamental Research Funds for the Central Universities, HUST: Nos. 2011JC050 and 2013TS111.

Supplementary material

414_2014_1100_MOESM1_ESM.doc (30 kb)
ESM 1 (DOC 29 kb)

References

  1. 1.
    Hillewig E, Degroote J, Van der Paelt T, Visscher A, Vandemaele P, Lutin B, D’Hooghe L, Vandriessche V, Piette M, Verstraete K (2013) Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int J Legal Med 127:677–689CrossRefPubMedGoogle Scholar
  2. 2.
    Thevissen PW, Kaur J, Willems G (2012) Human age estimation combining third molar and skeletal development. Int J Legal Med 126:285–292CrossRefPubMedGoogle Scholar
  3. 3.
    Saeed M, Berlin RM, Cruz TD (2012) Exploring the utility of genetic markers for predicting biological age. Leg Med (Tokyo) 14:279–285CrossRefGoogle Scholar
  4. 4.
    Barrett EL, Burke TA, Hammers M, Komdeur J, Richardson DS (2013) Telomere length and dynamics predict mortality in a wild longitudinal study. Mol Ecol 22:249–259CrossRefPubMedGoogle Scholar
  5. 5.
    Slijepcevic P (2008) DNA damage response, telomere maintenance and ageing in light of the integrative model. Mech Ageing Dev 129:11–16CrossRefPubMedGoogle Scholar
  6. 6.
    Meissner C, Ritz-Timme S (2010) Molecular pathology and age estimation. Forensic Sci Int 203:34–43CrossRefPubMedGoogle Scholar
  7. 7.
    Meissner C, Bruse P, Mohamed SA, Schulz A, Warnk H, Storm T, Oehmichen M (2008) The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp Gerontol 43:645–652CrossRefPubMedGoogle Scholar
  8. 8.
    Pilin A, Pudil F, Bencko V (2007) Changes in colour of different human tissues as a marker of age. Int J Legal Med 121:158–162CrossRefPubMedGoogle Scholar
  9. 9.
    Othani S, Abe I, Yamamoto T (2005) An application of d- and l-aspartic acid mixtures as standard specimens for the chronological age estimation. J Forensic Sci 50:1298–1302Google Scholar
  10. 10.
    Zubakov D, Liu F, van Zelm MC, Vermeulen J, Oostra BA, van Duijn CM, Driessen GJ, van Dongen JJ, Kayser M, Langerak AW (2010) Estimating human age from T-cell DNA rearrangements. Curr Biol 20:R970–R971CrossRefPubMedGoogle Scholar
  11. 11.
    Kayser M, Knijff P (2011) Improving human forensics through advances in genetics, genomics and molecular biology. Genetics 12:179–192PubMedGoogle Scholar
  12. 12.
    Ou XL, Gao J, Wang H, Wang HS, Lu HL, Sun HY (2012) Predicting human age with bloodstains by sjTREC quantification. PLoS One 7:e42412CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Schellenberg A, Lin Q, Schüler H, Koch CM, Joussen S, Denecke B, Walenda G, Pallua N, Suschek CV, Zenke M, Wagner W (2011) Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging (Albany NY) 3:873–888Google Scholar
  14. 14.
    Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23:413–418CrossRefPubMedGoogle Scholar
  15. 15.
    Murgatroyd C, Wu Y, Bockmühl Y, Spengler D (2010) The Janus face of DNA methylation in aging. Aging (Albany NY) 2:107–110Google Scholar
  16. 16.
    Martino DJ, Tulic MK, Gordon L, Hodder M, Richman T, Metcalfe J, Prescott SL, Saffery R (2011) Evidence for age-related and individual-specific changes in DNA methylation profile of mononuclear cells during early immune development in humans. Epigenetics 6:1085–1094CrossRefPubMedGoogle Scholar
  17. 17.
    Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070CrossRefPubMedGoogle Scholar
  18. 18.
    Fraga MF, Agrelo R, Esteller M (2007) Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 1100:60–74CrossRefPubMedGoogle Scholar
  19. 19.
    Ben-Avraham D, Muzumdar RH, Atzmon G (2012) Epigenetic genome-wide association methylation in aging and longevity. Epigenomics 4:503–509CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Leeb M, Wutz A (2012) Establishment of epigenetic patterns in development. Chromosoma 121:251–262CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, Miyazaki T, Ogura C, Okazaki Y, Jinno Y (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68:196–204CrossRefPubMedGoogle Scholar
  22. 22.
    Casillas MAJ, Lopatina N, Andrews LG, Tollefsbol TO (2003) Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem 252:33–43CrossRefPubMedGoogle Scholar
  23. 23.
    Shi X, Li J, Zhao C, Lv S, Xu G (2006) Methylation analysis of hMLH1 gene promoter by a bisulfite-sensitive single-strand conformation polymorphism-capillary electrophoresis method. Biomed Chromatogr 20:815–820CrossRefPubMedGoogle Scholar
  24. 24.
    So K, Tamura G, Honda T, Homma N, Waki T, Togawa N, Nishizuka S, Motoyama T (2006) Multiple tumor suppressor genes are increasingly methylated with age in non-neoplastic gastric epithelia. Cancer Sci 97:1155–1158CrossRefPubMedGoogle Scholar
  25. 25.
    Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Koch CM, Suschek CV, Lin Q, Bork S, Goergens M, Joussen S, Pallua N, Ho AD, Zenke M, Wagner W (2011) Specific age-associated DNA methylation changes in human dermal fibroblasts. PLoS One 6:e16679CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Bocklandt S, Lin W, Sehl ME, Sánchez FJ, Sinsheimer JS, Horvath S, Vilain E (2011) Epigenetic predictor of age. PLoS One 6:e14821CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Koch CM, Wagner W (2011) Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY) 3:1018–1027Google Scholar
  30. 30.
    Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Yi SH, Mei K, Xu LC, Huang DX, Yang RZ (2014) Isolation and identification of age-related DNA methylation markers for forensic age-prediction. Forensic Sci Int Genet 11:117–125CrossRefPubMedGoogle Scholar
  32. 32.
    Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, Boom D (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 102:15785–15790CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ (2007) Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res 35:e119CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Wojdacz TK, Hansen LL (2006) Techniques used in studies of age-related DNA methylation changes. Ann N Y Acad Sci 1067:479–487CrossRefPubMedGoogle Scholar
  35. 35.
    Kaneda A, Takai D, Kaminishi M, Okochi E, Ushijima T (2003) Methylation-sensitive representational difference analysis and its application to cancer research. Ann NY Acad Sci 983:131–141CrossRefPubMedGoogle Scholar
  36. 36.
    Song F, Mahmood S, Ghosh S, Liang P, Smiraglia DJ, Nagase H, Held WA (2009) Tissue specific differentially methylated regions (TDMR): changes in DNA methylation during development. Genomics 93:130–139CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Ma LL, Yi SH, Huang DX, Mei K, Yang RZ (2013) Screening and identification of tissue-specific methylation for body fluid identification. Forensic Sci Int Genet SS 4:e37–e38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shao Hua Yi
    • 1
  • Yun Shu Jia
    • 1
  • Kun Mei
    • 1
  • Rong Zhi Yang
    • 1
  • Dai Xin Huang
    • 1
  1. 1.Department of Forensic Medicine of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations