International Journal of Legal Medicine

, Volume 129, Issue 3, pp 569–581 | Cite as

Ground truth data generation for skull–face overlay

  • O. Ibáñez
  • F. Cavalli
  • B. R. Campomanes-Álvarez
  • C. Campomanes-Álvarez
  • A. Valsecchi
  • M. I. Huete
Technical Note


Objective and unbiased validation studies over a significant number of cases are required to get a more solid picture on craniofacial superimposition reliability. It will not be possible to compare the performance of existing and upcoming methods for craniofacial superimposition without a common forensic database available for the research community. Skull–face overlay is a key task within craniofacial superimposition that has a direct influence on the subsequent task devoted to evaluate the skull–face relationships. In this work, we present the procedure to create for the first time such a dataset. We have also created a database with 19 skull–face overlay cases for which we are trying to overcome legal issues that allow us to make it public. The quantitative analysis made in the segmentation and registration stages, together with the visual assessment of the 19 face-to-face overlays, allows us to conclude that the results can be considered as a gold standard. With such a ground truth dataset, a new horizon is opened for the development of new automatic methods whose performance could be now objectively measured and compared against previous and future proposals. Additionally, other uses are expected to be explored to better understand the visual evaluation process of craniofacial relationships in craniofacial identification. It could be very useful also as a starting point for further studies on the prediction of the resulting facial morphology after corrective or reconstructive interventionism in maxillofacial surgery.


Forensic anthropology Craniofacial superimposition Computer-aided craniofacial superimposition Skull–face overlay Ground truth Craniofacial relationships 



We would like to thank all the participants that give us the permission to work with both their head scans and facial photographs, Drs. Luca Contardo and Domenico Dalessandri for the support provided during images acquisition and head scanning. The University Hospital of Trieste and Ortoscan for supporting this research. This work has been supported by the Spanish Ministerio de Economía y Competitividad under the SOCOVIFI2 project (refs. TIN2012-38525-C01/C02,, the Andalusian Department of Innovación, Ciencia y Empresa under project TIC2011-7745, the Principality of Asturias Government under the project with reference CT13-55, and the European Union’s Seventh Framework Programme for research technological development and demonstration under the MEPROCS project (Grant Agreement No. 285624), including European Development Regional Funds (EDRF). Mrs. C. Campomanes-Álvarez’s work has been supported by Spanish MECD FPU grant AP-2012-4285. Dr. Ibañez’s work has been supported by Spanish MINECO Juan de la Cierva Fellowship JCI-2012-15359.


  1. 1.
    Burns KR (2012) Forensic anthropology training manual, 3rd edn. Pearson Education, Upper Saddle RiverGoogle Scholar
  2. 2.
    Cattaneo C (2007) Forensic anthropology: development of a classical discipline in the new millennium. Forensic Sci Int 165(2–3):185–193CrossRefPubMedGoogle Scholar
  3. 3.
    Yoshino M (2012) Craniofacial superimposition. In: Wilkinson C, Rynn C (eds) Craniofacial identification. University Press, Cambridge, pp 238–253CrossRefGoogle Scholar
  4. 4.
    Aulsebrook WA, Iscan MY, Slabbert JM, Beckert P (1995) Superimposition and reconstruction in forensic facial identification: a survey. Forensic Sci Int 75(2–3):101–120CrossRefPubMedGoogle Scholar
  5. 5.
    Stephan CN (2009) Craniofacial identification: techniques of facial approximation and CFS. In: Blau S, Ubelaker DH (eds) Handbook of forensic anthropology and archaeology. Left Coast, California, pp 304–321Google Scholar
  6. 6.
    Damas S, Cordón O, Ibáñez O, Santamaría J, Alemán I, Botella M (2011) Forensic identification by computer-aided CFS: a survey. ACM Comput Surv 43(4):27CrossRefGoogle Scholar
  7. 7.
    Al-Amad S, McCullough M, Graham J, Clement J, Hill A (2006) Craniofacial identification by computer-mediated superimposition. J Forensic Odontostomatol 24(2):47–52PubMedGoogle Scholar
  8. 8.
    Glaister J, Brash JC (1937) Medico-legal aspects of the Ruxton case. E and S Livingstone, EdinburghGoogle Scholar
  9. 9.
    Galton F (1896) The Bertillon system of identification. Nature 54:569–570CrossRefGoogle Scholar
  10. 10.
    Broca P (1875) Instructions craniologiques et craniométriques de la Société d’Anthrpologie de Paris [in French]. In Masson G (ed), vii ParisGoogle Scholar
  11. 11.
    Ubelaker DH, Bubniak E, Odonnell G (1992) Computer-assisted photographic superimposition. J Forensic Sci 37(3):750–762Google Scholar
  12. 12.
    Dorion RB (1983) Photographic superimposition. J Forensic Sci 28(3):724–734PubMedGoogle Scholar
  13. 13.
    Brocklebank LM, Holmgren CJ (1989) Development of equipment for the standardization of skull photographs in personal identifications by photographic superimposition. J Forensic Sci 34(5):1214–1221PubMedGoogle Scholar
  14. 14.
    Maat GJ (1989) The positioning and magnification of faces and skulls for photographic superimposition. Forensic Sci Int 41(3):225–235CrossRefPubMedGoogle Scholar
  15. 15.
    Helmer R, Grüner O (1976) Vereinfachte Schädelidentifizierung nach dem Superprojektionsverfahren mit Hilfe einer Video-Anlage [in German]. Z für Rechtsmedizin 80 (3):vGoogle Scholar
  16. 16.
    Fenton TW, Heard AN, Sauer NJ (2008) Skull-photo superimposition and border deaths: identification through exclusion and the failure to exclude. J Forensic Sci 53(1):34–40CrossRefPubMedGoogle Scholar
  17. 17.
    Seta S, Yoshino M (1993) A combined apparatus for photographic and video superimposition. In: Iscan MY, Helmer R (eds) Forensic analysis of the skull. Wiley, New York, pp 161–169Google Scholar
  18. 18.
    Lan Y, Cai D (1993) Technical advances in skull-photo superimposition. In Iscan MY and Helmer RGoogle Scholar
  19. 19.
    Pesce Delfino V, Colonna M, Vacca E, Potente F, Introna F (1986) Computer-aided skull/face superimposition. Am J Forensic Med Pathol 7(3):201–212CrossRefPubMedGoogle Scholar
  20. 20.
    Ricci A, Marella GL, Apostol MA (2006) A new experimental approach to computer-aided face/skull identification in forensic anthropology. Am J Forensic Med Pathol 27(1):46–49CrossRefPubMedGoogle Scholar
  21. 21.
    Ghosh AK, Sinha P (2001) An economised craniofacial identification system. Forensic Sci Int 117(1–2):109–119CrossRefPubMedGoogle Scholar
  22. 22.
    Nickerson BA, Fitzhorn PA, Koch SK, Charney M (1991) A methodology for near-optimal computational superimposition of two-dimensional digital facial photographs and three-dimensional cranial surface meshes. J Forensic Sci 36(2):480–500PubMedGoogle Scholar
  23. 23.
    Huete MI, Kahana T, Ibáñez O (2014) Past, present, and future of CFS: literature and international surveys. University of Granada, Spain, Tech. Rep. DECSAI 2014–01. Submitted to legal medicineGoogle Scholar
  24. 24.
    Ubelaker DH (2000) A history of Smithsonian-FBI collaboration in forensic anthropology, especially in regard to facial imagery [abstract]. Forensic Sci Commun 2 (4)Google Scholar
  25. 25.
    Ibáñez O, Ballerini L, Cordón O, Damas S, Santamaría J (2009) An experimental study on the applicability of evolutionary algorithms to CFS in forensic identification. Inf Sci 179(23):3998–4028CrossRefGoogle Scholar
  26. 26.
    Ibáñez O, Cordón O, Damas S, Santamaría J (2011) Modeling the skull–face overlay uncertainty using fuzzy sets. IEEE Trans Fuzzy Syst 19(5):946–959CrossRefGoogle Scholar
  27. 27.
    Ibáñez O, Cordón O, Damas S (2012) A cooperative coevolutionary approach dealing with the skull-face overlay uncertainty in forensic identification by CFS. Soft Comput 18(5):797–808CrossRefGoogle Scholar
  28. 28.
    Campomanes-Alvarez B, Ibáñez O, Navarro F, Alemán I, Cordón O, Damas S (2014) Dispersion assessment in the location of facial landmarks on photographs. Int J Legal Med:In pressGoogle Scholar
  29. 29.
    De Vos W, Casselman J, Swennen GR (2009) Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg 38:609–625CrossRefPubMedGoogle Scholar
  30. 30.
    Swennen GRJ, Schutyser F (2006) Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofac Orthop 130:410–416CrossRefGoogle Scholar
  31. 31.
    Katsumata A, Hirukawa A, Noujeim M, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2006) Image artifact in dental cone-beam CT. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:652–657CrossRefPubMedGoogle Scholar
  32. 32.
    Botsch M, Kobbelt L, Pauly M, Alliez P, Levy B (2010) Polygon mesh processing. AK PetersGoogle Scholar
  33. 33.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward SR, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 9:1323–1341CrossRefGoogle Scholar
  34. 34.
    Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans SystMan Cybern 3(6):610–621CrossRefGoogle Scholar
  35. 35.
    Mitchell T (1997) Machine learning. McGraw HillGoogle Scholar
  36. 36.
    Loh WY (2011) Classification and regression trees. Wiley Interdisc Rew Data Min Knowl Disc 1(1):14–23CrossRefGoogle Scholar
  37. 37.
    Quinlan JR (1993) C4.5: programs for machine learning. Morgan KaufmannGoogle Scholar
  38. 38.
    Hall M, Frank E, Holmes G, Pfahringer BRP, Witten IH (2009) The WEKA data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18CrossRefGoogle Scholar
  39. 39.
    Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vision Comput 21(11):977–1000CrossRefGoogle Scholar
  40. 40.
    Faugeras O (1993) Three-dimensional computer vision. A geometric viewpoint. MIT Press, CambridgeGoogle Scholar
  41. 41.
    Talbi E (2009) Metaheuristics: from design to implementation. WileyGoogle Scholar
  42. 42.
    Geisser S (1993) Predictive inference. Chapman and Hall, New YorkCrossRefGoogle Scholar
  43. 43.
    Gwen R, Swennen J, Schutyser F (2006) Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofac Orthop 130:410–416CrossRefGoogle Scholar
  44. 44.
    Grauer D, Cevidanes LSH, Styner MA, Heulfe I, Harmon ET, Zhu H, Proffit WR (2010) Accuracy and landmark error calculation using cone-beam computed tomography-generated cephalograms. Angle Orthod 80(2):286–294CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Loubele M, Bogaerts R, Van Dijck E, Pauwels R, Vanheusden S, Suetens P, Marchal G, Sanderink G, Jacobs R (2009) Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol 71(3):461–468CrossRefPubMedGoogle Scholar
  46. 46.
    Moores BM, Regulla D (2011) A review of the scientific basis for radiation protection of the patient. Radiat Prot Dosim 147(1–2):22–29CrossRefGoogle Scholar
  47. 47.
    Mah P, Reeves TE, McDavid WD (2010) Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol 39:323–335CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Damas S, Cordón O, Santamaría J (2011) Medical image registration using evolutionary computation: an experimental study. IEEE Comput Intell Mag 6(4):26–42CrossRefGoogle Scholar
  49. 49.
    Goshtasby AA (2005) 2-D and 3-D image registration for medical, remote sensing, and industrial applications. Wiley interscienceGoogle Scholar
  50. 50.
    Salvi J, Matabosch C, Fofi D, Forest J (2007) A review of recent range image registration methods with accuracy evaluation. Image Vis Comput 25(5):578–596CrossRefGoogle Scholar
  51. 51.
    Cummaudo M, Guerzoni M, Marasciuolo L, Gibelli D, Cigada A, Obertovà Z, Ratnayake M, Poppa P, Gabriel P, Rizt-Timme S, Cattaneo C (2013) Pitfalls at the root of facial assessment on photographs: a quantitative study of accuracy in positioning facial landmarks. Int J Legal Med 127:699–706CrossRefPubMedGoogle Scholar
  52. 52.
    Plooij JM, Maal TJ, Haers P, Borstlap WA, Kuijpers-Jagtman AM, Bergé SJ (2011) Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int J Oral Maxillofac Surg 40(4):341–345CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • O. Ibáñez
    • 1
    • 2
  • F. Cavalli
    • 3
  • B. R. Campomanes-Álvarez
    • 2
  • C. Campomanes-Álvarez
    • 1
  • A. Valsecchi
    • 2
  • M. I. Huete
    • 4
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  2. 2.European Centre for Soft ComputingMieresSpain
  3. 3.Research Unit of Paleoradiology and Allied SciencesOspedali Riuniti di TriesteTriesteItaly
  4. 4.Physical Anthropology LaboratoryUniversity of GranadaGranadaSpain

Personalised recommendations