International Journal of Legal Medicine

, Volume 129, Issue 1, pp 227–236 | Cite as

Dispersion assessment in the location of facial landmarks on photographs

  • B. R. Campomanes-Álvarez
  • O. Ibáñez
  • F. Navarro
  • I. Alemán
  • O. Cordón
  • S. Damas
Technical Note

Abstract

The morphological assessment of facial features using photographs has played an important role in forensic anthropology. The analysis of anthropometric landmarks for determining facial dimensions and angles has been considered in diverse forensic areas. Hence, the quantification of the error associated to the location of facial landmarks seems to be necessary when photographs become a key element of the forensic procedure. In this work, we statistically evaluate the inter- and intra-observer dispersions related to the facial landmark identification on photographs. In the inter-observer experiment, a set of 18 facial landmarks was provided to 39 operators. They were requested to mark only those that they could precisely place on 10 photographs with different poses (frontal, oblique, and lateral views). The frequency of landmark location was studied together with their dispersion. Regarding the intra-observer evaluation, three participants identified 13 facial points on five photographs classified in the frontal and oblique views. Each landmark location was repeated five times at intervals of at least 24 h. The frequency results reveal that glabella, nasion, subnasale, labiale superius, and pogonion obtained the highest location frequency in the three image categories. On the contrary, the lowest rate corresponds to labiale inferius and menton. Meanwhile, zygia, gonia, and gnathion were significantly more difficult to locate than other facial landmarks. They produced a significant effect on the dispersion depending on the pose of the image where they were placed, regardless of the type of observer that positioned them. In particular, zygia and gonia presented a statistically greater variation in the three image poses, while the location of gnathion is less precise in oblique view photographs. Hence, our findings suggest that the latter landmarks tend to be highly variable when determining their exact position.

Keywords

Forensic anthropology Facial morphology Facial landmarks Landmark location Observer dispersion 

Supplementary material

414_2014_1002_MOESM1_ESM.docx (52 kb)
ESM 1(DOCX 52 kb)

References

  1. 1.
    Aulsebrook WY, Iscan M, Slabbert J, Beckert P (1995) Superimposition and reconstruction in forensic facial identification: a survey. Forensic Sci Int 75(2–3):101–120PubMedCrossRefGoogle Scholar
  2. 2.
    Bookstein FL (1991) Morphometric tools for landmark data. Geometry and biology. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Cattaneo C (2009) Anthropology: aging the living. In: Moenssens A, Jamieson A (eds) Wiley encyclopedia of forensic science. Wiley, Chichester, pp 188–191Google Scholar
  4. 4.
    Cramon-Taubadel N, Frazier BC, Lahr MM (2007) The problem of assessing landmark error in geometric morphometrics: theory, methods, and modifications. Am J Phys Anthropol 134(1):24–35CrossRefGoogle Scholar
  5. 5.
    Cummaudo M, Guerzoni M, Marasciuolo L, Gibelli D, Cigada A, Obertovà Z, Ratnayake M, Poppa P, Gabriel P, Rizt-Timme S, Cattaneo C (2013) Pitfalls at the root of facial assessment on photographs: a quantitative study of accuracy in positioning facial landmarks. Int J Legal Med 127:699–706PubMedCrossRefGoogle Scholar
  6. 6.
    Damas S, Cordón O, Ibáñez O, Santamaría J, Alemán I, Botella M et al (2011) Forensic identification by computer-aided craniofacial superimposition: a survey. ACM Comput Surv 43(4):27CrossRefGoogle Scholar
  7. 7.
    Douglas TS (2004) Image processing for craniofacial landmark identification and measurement: a review of photogrammetry and cephalometry. Comp Med Imag Graph 28:401–409CrossRefGoogle Scholar
  8. 8.
    Farkas LG, Bryson W, Klotz J (1980) Is photogrammetry of the face reliable? Plast Reconstr Surg 66:346–355PubMedCrossRefGoogle Scholar
  9. 9.
    Fox J (2008) Applied regression analysis and generalized linear models, 2nd edn. SAGE Publications, Inc, Thousand Oaks, CaliforniaGoogle Scholar
  10. 10.
    Fu Y, Guo GD, Huang TS (2010) Age synthesis and estimation via faces: a survey. IEEE Trans Pattern Anal Mach Intell 32(11):1955–1976PubMedCrossRefGoogle Scholar
  11. 11.
    Halberstein RA (2001) The application of anthropometric indices in forensic photography: three case studies. J Forensic Sci 46(6):1438–1441PubMedGoogle Scholar
  12. 12.
    http://www.xlstat.com/ [Accessed: 2nd March 2014]
  13. 13.
    Knussmann R (1988) Die morphologische Identitätsprüfung (in German). In: Knussmann R (ed) Anthropologische: Handbuch der vergleichenden Biologie des Menschen. Gustav Fischer Verlag, Stuttgart, pp 386–405Google Scholar
  14. 14.
    Knussmann R (1988) Somatometrie (in German). In: Knussmann R (ed) Anthropologie. Gustav Fischer Verlag, Stuttgart, pp 232–285Google Scholar
  15. 15.
    Langsrud O (2003) ANOVA for unbalanced data: use type II instead of type III sums of squares. Stat Comput 13:163–167CrossRefGoogle Scholar
  16. 16.
    Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley, New YorkGoogle Scholar
  17. 17.
    Ludlow JB, Gubler M, Cevidanes L, Mol A (2009) Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop 136(3):312.e1–e10Google Scholar
  18. 18.
    Ozkul T, Ozkul MH, Akhtar R, Al-Kaabi F, Jumaia T (2009) A software tool for measurement of facial parameters. Open Chem Biomed Meth J 2:69–74CrossRefGoogle Scholar
  19. 19.
    Rogers SL (1986) The personal identification of living individuals. Charles C Thomas Pub Ltd. Springfield, IllinoisGoogle Scholar
  20. 20.
    Rösing FW (2008) Morphologische Identifikation von Personen. Grundlagen, Merkmale, Häufigkeiten (in German). In: Buck J, Krumbholz H (eds) Sachverständigenbeweis im Verkehrsrecht. Nomos, Baden-Baden, pp 201–319Google Scholar
  21. 21.
    Ross AH, Williams S (2008) Testing repeatability and error of coordinate landmark data acquired from crania. J Forensic Sci 53(4):782–785PubMedCrossRefGoogle Scholar
  22. 22.
    Sholts SB, Flores L, Walker PL, Wärmländer SKTS (2011) Comparison of coordinate measurement precision of different landmark types on human crania using a 3D laser scanner and a 3D digitiser: implications for applications of digital morphometrics. Int J Osteoarchaeol 21:535–543CrossRefGoogle Scholar
  23. 23.
    Stephan CN (2009) Craniofacial identification: techniques of facial approximation and craniofacial superimposition. In: Blau S, Ubelaker DH (eds) Handbook of forensic anthropology and archaeology. Left Coast, California, pp 304–321Google Scholar
  24. 24.
    Thukral P, Mitra K, Chellappa R (2012) A hierarchical approach for human age estimation. In: Proc IEEE ICASSP, Kyoto, pp 1529 –1532Google Scholar
  25. 25.
    Wu T, Turaga P, Chellappa R (2012) Age estimation and face verification across aging using landmarks. IEEE T Inf Foren Sec 7(6):1780–1788CrossRefGoogle Scholar
  26. 26.
    Yoshino M (2012) Craniofacial superimposition. In: Wilkinson C, Rynn C (eds) Craniofacial identification. University Press, Cambridge, pp 238–253CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • B. R. Campomanes-Álvarez
    • 1
  • O. Ibáñez
    • 1
  • F. Navarro
    • 2
  • I. Alemán
    • 2
  • O. Cordón
    • 1
    • 3
    • 4
  • S. Damas
    • 1
  1. 1.European Centre for Soft ComputingMieresSpain
  2. 2.Physical Anthropology LaboratoryUniversity of GranadaGranadaSpain
  3. 3.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  4. 4.Research Center on Information and Communication Technologies (CITIC-UGR)University of GranadaGranadaSpain

Personalised recommendations