Advertisement

International Journal of Legal Medicine

, Volume 128, Issue 5, pp 861–872 | Cite as

Morphometric analysis of pelvic sexual dimorphism in a contemporary Western Australian population

  • Daniel Franklin
  • Andrea Cardini
  • Ambika Flavel
  • Murray K. Marks
Original Article

Abstract

Requisite to routine casework involving unidentified skeletal remains is the formulation of an accurate biological profile, including sex estimation. Choice of method(s) is invariably related to preservation and by association, available bones. It is vital that the method applied affords statistical quantification of accuracy rates and predictive confidence so that evidentiary requirements for legal submission are satisfied. Achieving the latter necessitates the application of contemporary population-specific standards. This study examines skeletal pelvic dimorphism in contemporary Western Australian individuals to quantify the accuracy of using pelvic measurements to estimate sex and to formulate a series of morphometric standards. The sample comprises pelvic multi-slice computer tomography (MSCT) scans from 200 male and 200 female adults. Following 3D rendering, the 3D coordinates of 24 landmarks are acquired using OsiriX® (v.4.1.1) with 12 inter-landmark linear measurements and two angles acquired using MorphDb. Measurements are analysed using basic descriptive statistics and discriminant functions analyses employing jackknife validation of classification results. All except two linear measurements are dimorphic with sex differences explaining up to 65 % of sample variance. Transverse pelvic outlet and subpubic angle contribute most significantly to sex discrimination with accuracy rates between 100 % (complete pelvis—10 variables) and 81.2 % (ischial length). This study represents the initial forensic research into pelvic sexual dimorphism in a Western Australian population. Given these methods, we conclude that this highly dimorphic bone can be used to classify sex with a high degree of expected accuracy.

Keywords

Sex discrimination Forensic anthropology Pelvic measurements Computed tomography Population standards Sexual dimorphism 

Notes

Acknowledgments

The authors would like to thank A/Prof. Rob Hart, Frontier Medical Imaging International, Western Australia, for the assistance in obtaining the CT scans. We also offer our thanks to Dr Len Freedman and two anonymous referees for their helpful comments on this manuscript and to Dr. Allowen Evin for her fundamental help with the use of R. AC acknowledges the support of the Durham University Department of Anthropology and Durham International Fellowships for Research and Enterprise (DIFeREns) co-funded by Durham University and the European Union. We also acknowledge funding from a now completed ARC Discovery Grant (DP1092538) held by DF, AC and MKM.

References

  1. 1.
    Steyn M, İşcan MY (2008) Metric sex determination from the pelvis in modern Greeks. Forensic Sci Int 179:86.e1–e6CrossRefGoogle Scholar
  2. 2.
    Patriquin ML, Steyn M, Loth SR (2005) Metric analysis of sex differences in South African black and white pelves. Forensic Sci Int 147:119–127PubMedCrossRefGoogle Scholar
  3. 3.
    Franklin D, Flavel A, Kuliukas A, Hart R, Marks MK (2012) The development of forensic anthropological standards in Western Australia. In: Proceedings of the American Academy of Forensic Sciences LXIV, pp. 361–362Google Scholar
  4. 4.
    Ross AH, Ubelaker DH, Kimmerle EH (2011) Implications of dimorphism, population variation, and secular change in estimating population affinity in the Iberian Peninsula. Forensic Sci Int 206:214-e1–214-e5CrossRefGoogle Scholar
  5. 5.
    Franklin D, Freedman L, Milne N (2005) Sexual dimorphism and discriminant function sexing in indigenous South African crania. HOMO J Comput Hum Biol 55:213–228CrossRefGoogle Scholar
  6. 6.
    Franklin D, Cardini A, Oxnard CE (2010) A geometric morphometric approach to the quantification of population variation in sub-Saharan African crania. Am J Hum Biol 22:23–35PubMedCrossRefGoogle Scholar
  7. 7.
    Franklin D, Cardini A, Flavel A, Kuliukas A, Marks MK, Hart R, Oxnard C, O’Higgins P (2012) Concordance of traditional osteometric and volume-rendered MSCT interlandmark cranial measurements. Int J Leg Med 127:1–16Google Scholar
  8. 8.
    Franklin D, Cardini A, Flavel A, Kuliukas A (2012) Linear measurements and geometric morphometric data for quantifying cranial sexual dimorphism: preliminary investigations in a Western Australian population. Int J Leg Med 126:549–558CrossRefGoogle Scholar
  9. 9.
    Verhoff MA, Marcel A, Ramsthaler F, Krähahn J, Deml U, Gille RJ, Grabherr S, Thali MJ, Kreutz K (2008) Digital forensic osteology—possibilities in cooperation with the Virtopsy® project. Forensic Sci Int 174:152–156PubMedCrossRefGoogle Scholar
  10. 10.
    Ramsthaler F, Kettner M, Gehl A, Verhoff MA (2010) Digital forensic osteology: morphological sexing of skeletal remains using volume-rendered cranial CT scans. Forensic Sci Int 195:148–152PubMedCrossRefGoogle Scholar
  11. 11.
    Phenice TW (1969) A newly developed visual method of sexing the os pubis. Am J Phys Anthropol 30:297–301PubMedCrossRefGoogle Scholar
  12. 12.
    Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains, Arkansas Archaeological Survey Research Series No. 44, ArkansasGoogle Scholar
  13. 13.
    Schulter-Ellis FP, Hayek LC, Schmidt DJ (1985) Determination of sex with a discriminant analysis of new pelvic bone measurements: part II. J Forensic Sci 30:178–185PubMedGoogle Scholar
  14. 14.
    Gómez-Valdés JA, Ramírez GT, Molgado SB, Sain-Leu PH, Caballero JLC, Sánchez-Mejorada G (2011) Discriminant function analysis for sex assessment in pelvic girdle bones: sample from the contemporary Mexican population. J Forensic Sci 56:297–301PubMedCrossRefGoogle Scholar
  15. 15.
    Vacca E, Di Vella G (2012) Metric characterization of the human coxal bone on a recent Italian sample and multivariate discriminant analysis to determine sex. Forensic Sci Int 222:401.e1–401.e9CrossRefGoogle Scholar
  16. 16.
    Steyn M, Pretorius E, Hutten L (2004) Geometric morphometric analysis of the greater sciatic notch in South Africans. HOMO J Comput Hum Biol 54:197–206CrossRefGoogle Scholar
  17. 17.
    Gonzalez PN, Bernal V, Perez SI (2009) Geometric morphometric approach to sex estimation of human pelvis. Forensic Sci Int 189:68–74PubMedCrossRefGoogle Scholar
  18. 18.
    Bytheway JA, Ross AH (2010) A geometric morphometric approach to sex determination of the human adult os coxa. J Forensic Sci 55:859–864PubMedCrossRefGoogle Scholar
  19. 19.
    Velemínská J, Krajíček V, Dupej J, Goméz-Valdés JA, Velemínský P, Šefčáková A, Pelikán J, Sánchez-Mejorada G, Brůžek J (2013) Technical note: geometric morphometrics and sexual dimorphism of the greater sciatic notch in adults from two skeletal collections: the accuracy and reliability of sex classification. Am J Phys Anthropol 152:558–565PubMedCrossRefGoogle Scholar
  20. 20.
    Bilfeld MF, Dedouit F, Rousseau H, Sans N, Braga J, Rouge D, Telmon N (2012) Human coxal bone sexual dimorphism and multislice computed tomography: geometric morphometric analysis of 65 adults. J Forensic Sci 57:578–588PubMedCrossRefGoogle Scholar
  21. 21.
    Franklin D, Flavel A, Cardini A, Marks MK (2013) Pelvic sexual dimorphism in a Western Australian population: integration of geometric and traditional morphometric approaches. In: Proceedings of the American Academy of Forensic Sciences LXV, pp. 419–420Google Scholar
  22. 22.
    Walker PL (2008) Sexing skulls using discriminant function analysis of visually assessed traits. Am J Phys Anthropol 136:39–50PubMedCrossRefGoogle Scholar
  23. 23.
    Hefner JT (2009) Cranial nonmetric variation and estimating ancestry. J Forensic Sci 54:985–995PubMedCrossRefGoogle Scholar
  24. 24.
    Franklin D, Cardini A, Flavel A, Kuliukas A (2013) Estimation of sex from cranial measurements in a Western Australian population. Forensic Sci Int 229:158.e1–158.e8CrossRefGoogle Scholar
  25. 25.
    Franklin D, Flavel A, Kuliukas A, Cardini A, Marks MK, Oxnard CE, O’Higgins P (2012) Estimation of sex from sternal measurements in a Western Australian population. Forensic Sci Int 217:230.e1–230.e5CrossRefGoogle Scholar
  26. 26.
    National Health and Medical Research Council (NHMRC) (2013) National Statement on Ethical Conduct in Human Research—updated 2013. http://www.nhmrc.gov.au/guidelines/publications/e72
  27. 27.
  28. 28.
    Ward RE, Jamison PL (1991) Measurement precision and reliability in craniofacial anthropometry: implications and suggestions for clinical applications. J Craniofac Genet Dev Biol 11:156–164PubMedGoogle Scholar
  29. 29.
    Weinberg SM, Scott NM, Neiswanger K, Marazita ML (2005) Intraobserver error associated with measurements of the hand. Am J Hum Biol 17:368–371PubMedCrossRefGoogle Scholar
  30. 30.
    Sanfilippo PG, Cardini A, Hewitt AW, Crowston JG, Mackey DA (2009) Optic disc morphology-rethinking shape. Prog Retin Eye Res 28:227–248PubMedCrossRefGoogle Scholar
  31. 31.
    Kovarovic K, Aiello LC, Cardini A, Lockwood CA (2011) Discriminant function analyses in archaeology: are classification rates too good to be true? J Archaeol Sci 38:3006–3018CrossRefGoogle Scholar
  32. 32.
    Evin A, Cucchi T, Cardini A, Vidarsdottir US, Larson G, Dobney K (2013) The long and winding road: identifying pig domestication through molar size and shape. J Archaeol Sci 40:735–743CrossRefGoogle Scholar
  33. 33.
    Thali MJ, Yen K, Schweitzer W, Vock P, Boesch C, Ozdoba C, Schroth G, Sonnenschein M, Doernhoefer T, Scheurer E, Plattner T, Dirnhofer R (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci 48:386–403PubMedGoogle Scholar
  34. 34.
    Manuela B, Winklhofer S, Hatch GM, Ampanozi G, Thali MJ, Ruder TD (2013) The rise of forensic and post-mortem radiology—analysis of the literature between the year 2000 and 2011. J Forensic Radiol Imaging 1:3–9CrossRefGoogle Scholar
  35. 35.
    Franklin D, Flavel A (2014) Brief communication: timing of spheno-occipital closure in modern Western Australians. Am J Phys Anthropol 153:132–138PubMedCrossRefGoogle Scholar
  36. 36.
    Bassed RB, Briggs C, Drummer OH (2011) Age estimation using CT imaging of the third molar tooth, the medial clavicular epiphysis, and the spheno-occipital synchondrosis: a multifactorial approach. Forensic Sci Int 212:273.e271–273.e275CrossRefGoogle Scholar
  37. 37.
    Minier MD, Maret D, Vergnault M, Mokrane F, Rousseau H, Adalian P, Telmon N, Rouge D (2014) Fetal age estimation using MSCT scans of deciduous tooth germs. Int J Leg Med 128:177–182CrossRefGoogle Scholar
  38. 38.
    Giurazza F, Schena E, Del Vescovo R, Cazzato RL, Mortato L. Saccomandi P, Paternostro F, Onofri L, Beomonte Zobel B (2013) Sex determination from scapular length measurements by CT scans images in a Caucasian population. In Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, pp. 1632–1635Google Scholar
  39. 39.
    Decker SJ, Davy-Jow SL, Ford JM, Hilbelink DR (2011) Virtual determination of sex: metric and nonmetric traits of the adult pelvis from 3D computed tomography models. J Forensic Sci 56:1107–1114PubMedCrossRefGoogle Scholar
  40. 40.
    Macaluso P, Lucena J (2014) Stature estimation from radiographic sternum length in a contemporary Spanish population. Int J Leg Med. doi: 10.1007/s00414-014-0975-3 Google Scholar
  41. 41.
    Bookstein FL (1997) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, CambridgeGoogle Scholar
  42. 42.
    Rosenberg K, Trevathan W (1996) Bipedalism and human birth: the obstetrical dilemma revisited. Evol Anthropol Issues News Rev 4:161–168CrossRefGoogle Scholar
  43. 43.
    Oxorn H (1986) Oxorn-foote human labor & birth, 5th edn. Appleton, NorwalkGoogle Scholar
  44. 44.
    Rosenberg KR (1992) The evolution of modern human childbirth. Am J Phys Anthropol 35:89–124CrossRefGoogle Scholar
  45. 45.
    Tague RG (1992) Sexual dimorphism in the human bony pelvis, with a consideration of the Neandertal pelvis from Kebara Cave, Israel. Am J Phys Anthropol 88:1–21PubMedCrossRefGoogle Scholar
  46. 46.
    Small C, Brits DM, Hemingway J (2012) Quantification of the subpubic angle in South Africans. Forensic Sci Int 222:395.e1–395.e6CrossRefGoogle Scholar
  47. 47.
    Tague RG (1989) Variation in pelvic size between males and females. Am J Phys Anthropol 80:59–71PubMedCrossRefGoogle Scholar
  48. 48.
    Zech WD, Hatch G, Siegenthaler L, Thali MJ, Lösch S (2012) Sex determination from os sacrum by postmortem CT. Forensic Sci Int 221:39–43PubMedCrossRefGoogle Scholar
  49. 49.
    Arsuaga JL, Carretero JM (1994) Multivariate analysis of the sexual dimorphism of the hip bone in a modern human population and in early hominids. Am J Phys Anthropol 93:241–257PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel Franklin
    • 1
  • Andrea Cardini
    • 1
    • 2
    • 3
  • Ambika Flavel
    • 1
  • Murray K. Marks
    • 1
    • 4
  1. 1.Centre for Forensic ScienceThe University of Western AustraliaCrawleyAustralia
  2. 2.Dipartimento di Scienze Chimiche e GeologicheUniversità di Modena e Reggio EmiliaModenaItaly
  3. 3.Hull York Medical SchoolUniversity of HullHullUK
  4. 4.Department of General Dentistry, Graduate School of MedicineUniversity of Tennessee Medical CenterKnoxvilleUSA

Personalised recommendations