International Journal of Legal Medicine

, Volume 127, Issue 6, pp 1109–1123 | Cite as

Smart drugs: green shuttle or real drug?

  • L Cornara
  • B Borghesi
  • C Canali
  • M Andrenacci
  • M Basso
  • S Federici
  • M Labra
Original Article


We have combined morphological, molecular, and chemical techniques in order to identify the plant and chemical composition of some last-generation smart drugs, present on the market under the following names: Jungle Mistic Incense, B-52, Blendz, and Kratom 10x. Micromorphological analyses of botanical fragments allowed identification of epidermal cells, stomata, trichomes, starch, crystals, and pollen. DNA barcoding was carried out by the plastidial gene rbcL and the spacer trnH-psbA as universal markers. The combination of morphological and molecular data revealed a mixture of plants from different families, including aromatic species, viz., Lamiaceae and Turneraceae. GC-MS and LC-MS analyses on ethanol or methanol extracts showed the presence of synthetic cannabinoids, including JWH-250 in Jungle, JWH-122 in B-52, and JWH-073 and JWH-018 in Blendz. In Kratom 10x, only the indole alkaloid mitragynine was detected. All the identified synthetic cannabinoids, apart from mitragynine, are under the restriction of law in Italy (TU 309/90). Synthetic cannabinoid crystals were also identified by scanning electron microscopy and energy dispersive X-ray spectroscopy, which also detected other foreign organic chemicals, probably preservatives or antimycotics. In Kratom only leaf fragments from Mitragyna speciosa, containing the alkaloid mitragynine, were found. In the remaining products, aromatic plant species have mainly the role of hiding synthetic cannabinoids, thus acting as a “green shuttle” rather than as real drugs. Such a multidisciplinary approach is proposed as a method for the identification of herbal blends of uncertain composition, which are widely marketed in “headshops” and on the Internet, and represent a serious hazard to public health.


Smart drugs Cannabinoids DNA barcoding Micromorphology GC-MS analysis SEM-EDS 



We are very grateful to Laura Negretti (DISTAV Università di Genova) for the technical assistance in SEM–EDS analyses, and to Neil Campbell (Università di Milano-Bicocca) for language revision. We also thank Riccardo Albericci, Curator of the Botanical Garden Clelia Durazzo Grimaldi of Genoa, Italy, and the firm A. Minardi & Figli s.r.l. (Bagnocavallo, Ravenna, Italy) for providing plant samples and herbal blends used for comparison. This research was partially supported by Fondazione Carige, Genoa, Italy (nr. 2013.0132-2).


  1. 1.
    Lindigkeit R, Boehme A, Eiserloh I, Luebbecke M, Wiggermann M, Ernst L, Beuerle T (2009) Spice: a never ending story? Forensic Sci Int 191:58–63PubMedGoogle Scholar
  2. 2.
    Schmidt MM, Sharma A, Schifano F, Feinmann C (2011) “Legal highs” on the net—evaluation of UK-based websites, products and product information. Forensic Sci Int 206:92–97PubMedGoogle Scholar
  3. 3.
    Atwood BK, Lee D, Straiker A, Widlanski TS, Mackie K (2011) CP47,497-C8 and JWH073, commonly found in ‘Spice’ herbal blends, are potent and efficacious CB(1) cannabinoid receptor agonists. Eur J Pharmacol 659:139–45PubMedGoogle Scholar
  4. 4.
    Dresen S, Ferreirós N, Pütz M, Westphal F, Zimmermann R, Auwärter V (2010) Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds. J Mass Spectrom 45:1186–94PubMedGoogle Scholar
  5. 5.
    Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N (2009) ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44:832–837PubMedGoogle Scholar
  6. 6.
    Vardakou I, Pistos C, Spiliopoulou C (2010) Spice drugs as a new trend: mode of action, identification and legislation. Toxicol Lett 197:157–162PubMedGoogle Scholar
  7. 7. Accessed 22 Jun 2012
  8. 8.
    Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321Google Scholar
  9. 9.
    Casiraghi M, Labra M, Ferri E, Galimberti A, De Mattia F (2010) DNA barcoding: a six-question tour to improve users' awareness about the method. Brief Bioinform 11:440–453PubMedGoogle Scholar
  10. 10.
    Fay MF, Bayer C, Alverson WS, de Bruijn AY, Chase MW (1998) Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa. Taxon 47:43–50Google Scholar
  11. 11.
    Newmaster SG, Ragupathy S (2009) Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol Ecol Resour 9:172–180Google Scholar
  12. 12.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 PubMedGoogle Scholar
  13. 13.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  14. 14.
    BOLD Identification System (IDS) Accessed 12 Oct 2012
  15. 15.
    Jackson BP, Snowdon DW (1990) Atlas of microscopy of medicinal plants, culinary herbs and spices. CRC, Boca RatonGoogle Scholar
  16. 16.
    Rahfeld B (2011) Mikroskopischer farbatlas pflanzlicher drogen. Spektrum Akademischer Verlag, PlankstadtGoogle Scholar
  17. 17.
    Tschirch A, Oesterle O (1900) Anatomischer atlas der pharmakognosie und nahrungsmittelkunde. Leipzig Chr. Herm. Tauchnitz, Bern, SchweizGoogle Scholar
  18. 18.
    Schneider A (1902) Powdered vegetable drugs. Calumet, PittsburghGoogle Scholar
  19. 19.
    Kumar S, Taneja R, Sharma A (2006) Pharmacognostic standardization of Turnera aphrodisiaca Ward. J Med Food 9:254–260PubMedGoogle Scholar
  20. 20.
    Buchner R, Weber M (2000 onwards) Descriptions, illustrations, identifications, and information retrieval. PalDat-a palinologicaldatabase: Accessed 12 Oct 2012
  21. 21.
    Erdtman G (1952) Pollen morphology and plant taxonomy I. Almqvist & Wiksell, StockholmGoogle Scholar
  22. 22.
    Faegri K, Iversen J (1975) Textbook of pollen analysis. Hafner, New YorkGoogle Scholar
  23. 23.
    Punt W et al. (1976–2003) The Northwest European pollen flora (NEPF). Vols 1–8. Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Lersten NR, Horner HT (2011) Unique calcium oxalate “duplex” and “concretion” idioblasts in leaves of tribe Naucleeae (Rubiaceae). Am J Bot 98:1–11PubMedGoogle Scholar
  25. 25.
    Jensen WA (1962) Botanical histochemistry. Freeman, San FranciscoGoogle Scholar
  26. 26.
    Martin PS, Drew CM (1969) Scanning electron photomicrographs of southwestern pollen grains. J Ariz-Nev Acad Sci 5:147–176Google Scholar
  27. 27.
    Martin PS, Drew CM (1970) Additional scanning electron micrographs of southwestern pollen grains. J Ariz-Nev Acad Sci 6:140–161Google Scholar
  28. 28.
    Pathan AK, Bond J, Gaskin RE (2008) Sample preparation for scanning electron microscopy of plant surfaces—horses for courses. Micron 39:1049–1061PubMedGoogle Scholar
  29. 29.
    Solomon AM, King JE, Martin PS, Thomas J (1973) Further scanning electron photomicrographs of southwestern pollen grains. J Ariz-Nev Acad Sci 8:135–157Google Scholar
  30. 30.
    Zafar M, Khan MA, Ahmad M, Sultana S, Qureshi R, Tareen RB (2010) Authentication of misidentified crude herbal drugs marketed in Pakistan. Journal of Medicinal Plants Research 4:1584–1593 Available online at ISSN 1996–0875Google Scholar
  31. 31.
    Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2011) Identification and quantitation of two cannabimimetic phenylacetylindoles JWH-251 and JWH-250, and four cannabimimetic naphthoylindoles JWH-081, JWH-015, JWH-200, and JWH-073 as designer drugs in illegal products. Forensic Toxicol 29:25–37Google Scholar
  32. 32.
    Department for Antidrug Policies (DPA) National early warning system (N.E.W.S.). Accessed 20 Dec 2012
  33. 33.
    Scientific Working Group for the Analysis of Seized Drugs. Accessed 20 Dec 2012
  34. 34.
    Walker MD, Ahmad SJ (1970) The Mitragyna species of Asia. XVII. The anatomy of the leaves of Mitragyna javanica var. microphylla. Planta Medica 18:55–65Google Scholar
  35. 35.
    Razafimandimbison SG, Bremer B (2002) Phylogeny and classification of Naucleeae s.l. (Rubiaceae) inferred from molecular (ITS, rbcL, and trnT-F) and morphological data. Am J Bot 89:1027–1041PubMedGoogle Scholar
  36. 36.
    Kennedy PD, Collin W (2010) Automated ion trap screening method for the detection of synthetic cannabinoids in commercial herbal incense products. Synthetic cannabinoid screening.,CaymanChemicalSyntheticCannabinoidScreening.pdf/filename/CaymanChemicalSyntheticCannabinoidScreening.pdf. Accessed 22 June 2012
  37. 37.
    Decreto del Presidente della Repubblica 9 ottobre 1990, n. 309 GU n. 62 del 15-3-2006 - Suppl Ordinario n.62Google Scholar
  38. 38.
    United Nations Office on Drugs and Crime (UNODC) (2009) Recommended methods for the identification and analysis of cannabis and cannabis products. United Nations New York. Accessed 26 Jan 2012
  39. 39.
    Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y (2009) Identification of a cannabimimetic indole as a designer drug in a herbal product. Forensic Toxicol 27:61–66Google Scholar
  40. 40.
    Dargan PI, Hudson S, Ramsey J, Wood DM (2011) The impact of changes in UK classification of the synthetic cannabinoid receptor agonists in ‘Spice’. Int J Drug Policy 22:274–277PubMedGoogle Scholar
  41. 41.
    Gottardo R, Chiarini A, Dal Prà I, Seri C, Rimondo C, Serpelloni G, Armato U, Tagliaro F (2012) Direct screening of herbal blends for new synthetic cannabinoids by MALDI-TOF MS. J Mass Spectrom 47:141–146PubMedGoogle Scholar
  42. 42.
    Uchiyama N, Kikura-Hanajiri R, Ogata J, Goda Y (2010) Chemical analysis of synthetic cannabinoids as designer drugs in herbal products. Forensic Sci Int 198:31–38PubMedGoogle Scholar
  43. 43.
    Kumar S, Taneja R, Sharma A (2005) The genus Turnera: a review update. Pharm Biol 43:383–391Google Scholar
  44. 44.
    Ministero della Salute. D.L. 16/6/2010 Accessed 20 Jun 2011
  45. 45.
    Ministero della Salute. D.L. 11/5/2011 Accessed 8 Jul 2011
  46. 46.
    Schultes RE, Hofmann A, Rätsch C (2001) Plants of the gods. Healing Arts Press, Rochester, VermontGoogle Scholar
  47. 47.
    De Mattia F, Bruni I, Galimberti A, Cattaneo F, Casiraghi M, Labra M (2011) A comparative study of different DNA barcoding markers for the identification of some members of Lamiaceae. Food Rev Int 44:693–702Google Scholar
  48. 48.
    De Mattia F, Gentili R, Bruni I, Galimberti A, Sgorbati S, Casiraghi M, Labra M (2012) A multi-marker DNA barcoding approach to save time and resources in vegetation surveys. Bot J Linn Soc 169:518–529Google Scholar
  49. 49.
    Serrano R, da Silva G, Silva O (2010) Application of light and scanning electron microscopy in the identification of herbal medicines. In Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education. ©FORMATEX 2010, Badajoz, Spain, pp.182–190Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L Cornara
    • 1
  • B Borghesi
    • 1
  • C Canali
    • 2
  • M Andrenacci
    • 2
  • M Basso
    • 2
  • S Federici
    • 3
  • M Labra
    • 3
  1. 1.Polo Botanico Hanbury, DISTAVUniversità di GenovaGenoaItaly
  2. 2.Gabinetto Regionale di Polizia Scientifica per la LiguriaDipartimento della Pubblica Sicurezza del Ministero dell’InternoGenoaItaly
  3. 3.Dipartimento di Biotecnologie e BioscienzeUniversità di Milano-BicoccaMilanItaly

Personalised recommendations