International Journal of Legal Medicine

, Volume 128, Issue 1, pp 193–205 | Cite as

The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing

Original Article

Abstract

Decomposition studies of vertebrate remains primarily focus on data that can be seen with the naked eye, such as arthropod or vertebrate scavenger activity, with little regard for what might be occurring with the microorganism community. Here, we discuss the necrobiome, or community of organisms associated with the decomposition of remains, specifically, the “epinecrotic” bacterial community succession throughout decomposition of vertebrate carrion. Pyrosequencing was used to (1) detect and identify bacterial community abundance patterns that described discrete time points of the decomposition process and (2) identify bacterial taxa important for estimating physiological time, a time–temperature metric that is often commensurate with minimum post-mortem interval estimates, via thermal summation models. There were significant bacterial community structure differences in taxon richness and relative abundance patterns through the decomposition process at both phylum and family taxonomic classification levels. We found a significant negative linear relationship for overall phylum and family taxon richness as decomposition progressed. Additionally, we developed a statistical model using high throughput sequencing data of epinecrotic bacterial communities on vertebrate remains that explained 94.4 % of the time since placement of remains in the field, which was within 2–3 h of death. These bacteria taxa are potentially useful for estimating the minimum post-mortem interval. Lastly, we provide a new framework and standard operating procedure of how this novel approach of using high throughput metagenomic sequencing has remarkable potential as a new forensic tool. Documenting and identifying differences in bacterial communities is key to advancing knowledge of the carrion necrobiome and its applicability in forensic science.

Keywords

Necrobiome Minimum PMI Bacteria Carrion Decomposition Epinecrotic communities 

Supplementary material

414_2013_872_MOESM1_ESM.docx (229 kb)
Fig. S1(DOCX 229 kb)
414_2013_872_MOESM2_ESM.docx (5 mb)
Fig. S2(DOCX 5086 kb)
414_2013_872_MOESM3_ESM.docx (165 kb)
Fig. S3(DOCX 164 kb)
414_2013_872_MOESM4_ESM.docx (240 kb)
Fig. S4(DOCX 240 kb)
414_2013_872_MOESM5_ESM.docx (53 kb)
Table S1(DOCX 52 kb)
414_2013_872_MOESM6_ESM.docx (85 kb)
Table S2(DOCX 85 kb)
414_2013_872_MOESM7_ESM.docx (43 kb)
Table S3(DOCX 42 kb)
414_2013_872_MOESM8_ESM.docx (44 kb)
Table S4(DOCX 44 kb)
414_2013_872_MOESM9_ESM.docx (45 kb)
Table S5(DOCX 45 kb)
414_2013_872_MOESM10_ESM.docx (40 kb)
Table S6(DOCX 39 kb)
414_2013_872_MOESM11_ESM.docx (42 kb)
Table S7(DOCX 42 kb)
414_2013_872_MOESM12_ESM.docx (45 kb)
Table S8(DOCX 44 kb)
414_2013_872_MOESM13_ESM.docx (75 kb)
Table S9(DOCX 74 kb)

References

  1. 1.
    Benbow M, Lewis A, Tomberlin J, Pechal J (2013) Seasonal necrophagous insect community assembly during vertebrate carrion decomposition. J Med Entomol 50(2):440–450PubMedCrossRefGoogle Scholar
  2. 2.
    Michaud J-P, Moreau G (2009) Predicting the visitation of carcasses by carrion-related insects under different rates of degree-day accumulation. For Sci Int 185:78–83Google Scholar
  3. 3.
    Byrd JH, Allen JC (2001) The development of the black blow fly, Phormia regina (Meigen). For Sci Int 120(1–2):79–88Google Scholar
  4. 4.
    Byrd JH, Butler JF (1996) Effects of temperature on Cochliomyia macellaria (Diptera: Calliphoridae) development. J Med Entomol 33:901–905PubMedGoogle Scholar
  5. 5.
    Byrd JH, Butler JF (1997) Effects of Temperature on Chrysomya rufifacies (Diptera: Calliphoridae) development. J Med Entomol 34:353–358PubMedGoogle Scholar
  6. 6.
    Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46(5):592–602CrossRefGoogle Scholar
  7. 7.
    Schoenly K, Reid W (1987) Dynamics of heterotrophic succession in carrion arthropod assemblages: discrete seres or a continuum of change? Oecologia 73:192–202CrossRefGoogle Scholar
  8. 8.
    Amendt J, Campobasso CP, Gaudry E, Reiter C, LeBlanc HN, Hall MJR (2007) Best practice in forensic entomology—standards and guidelines. Int J Legal Med 121(2):90–104PubMedCrossRefGoogle Scholar
  9. 9.
    Byrd JH, Castner JL (2001) Forensic entomology: the utility of arthropods in legal investigations. CRC Press, Boca Raton, FloridaGoogle Scholar
  10. 10.
    Villet MH (2011) African carrion ecosystems and their insect communities in relation to forensic entomology. Pest Technol 5(1):1–15Google Scholar
  11. 11.
    Greenberg B (1991) Flies as forensic indicators. J Med Entomol 28:565–577PubMedGoogle Scholar
  12. 12.
    Zimmerman KA, Wallace JR (2008) The potential to determine a postmortem submersion interval based on algal/diatom diversity on decomposing mammalian carcasses in brackish ponds in Delaware. J For Sci 53(4):935–941Google Scholar
  13. 13.
    Dickson GC, Poulter RTM, Maas EW, Probert PK, Kieser JA (2011) Marine bacterial succession as a potential indicator of postmortem submersion interval. For Sci Int 209(1–3):1–10Google Scholar
  14. 14.
    Hitosugi M, Ishii K, Yaguchi T, Chigusa Y, Kurosu A, Kido M, Nagai T, Tokudome S (2006) Fungi can be a useful forensic tool. Legal Medicine 8:240–242PubMedCrossRefGoogle Scholar
  15. 15.
    Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281(5375):363–365PubMedCrossRefGoogle Scholar
  16. 16.
    Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26(10):1117–1124PubMedCrossRefGoogle Scholar
  17. 17.
    Hudson ME (2008) Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol Ecol Resour 8(1):3–17PubMedCrossRefGoogle Scholar
  18. 18.
    Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F, Affourtit J, Egholm M, Henrissat B, Knight R, Gordon JI (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A 107(16):7503–7508PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7(57):1–7Google Scholar
  20. 20.
    The Human Microbiome Jumpstart Reference Strains Consortium (2010) A catalog of reference genomes from the human microbiome. Science 328(5981):994–999PubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, Shah N, Wang C, Magrini V, Wilson RK, Cantarel BL, Coutinho PM, Henrissat B, Crock LW, Russell A, Verberkmoes NC, Hettich RL, Gordon JI (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Nat Acad Sci U S A 106:5859–5864CrossRefGoogle Scholar
  22. 22.
    Price LB, Liu CM, Melendez JH, Frankel YM, Engelthaler D, Aziz M, Bowers J, Rattray R, Ravel J, Kingsley C, Keim PS, Lazarus GS, Zenilman JM (2009) Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 4(7):e6462PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55(5):856–866PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Schoenly KG, Haskell NH, Hall RD, Gbur JR (2007) Comparative performance and complementarity of four sampling methods and arthropod preference tests from human and porcine remains at the forensic anthropology center in Knoxville, Tennessee. J Med Entomol 44(5):881–894PubMedCrossRefGoogle Scholar
  26. 26.
    Lewis AJ, Benbow ME (2011) When entomological evidence crawls away: Phormia regina en masse larval dispersal. J Med Entomol 48(6):1112–1119PubMedCrossRefGoogle Scholar
  27. 27.
    Megyesi MS, Nawrocki SP, Haskell NH (2005) Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J For Sci 50(3):618–626Google Scholar
  28. 28.
    Michaud JP, Moreau G (2011) A statistical approach based on accumulated degree-days to predict decomposition-related processes in forensic studies. J For Sci 56(1):229–232Google Scholar
  29. 29.
    Catts EP (1992) Problems in estimating the postmortem interval in death investigations. J Agricul Entomol 9(4):245–255Google Scholar
  30. 30.
    Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D (2008) Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 3(10):e3326PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Sen R, Ishak HD, Estrada D, Dowd SE, Hong E, Mueller UG (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci U S A 106(42):17805–17810PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Handl S, Dowd SE, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS (2011) Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol Ecol 76(2):301–310PubMedCrossRefGoogle Scholar
  33. 33.
    Andreotti R, Perez de Leon AA, Dowd SE, Guerrero FD, Bendele KG, Scoles GA (2011) Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol 11(1):1–6CrossRefGoogle Scholar
  34. 34.
    Gontcharova V, Youn E, Wolcott RD, Hollister EB, Gentry TJ, Dowd SE (2010) Black Box Chimera Check (B2C2): a Windows-based software for batch depletion of chimeras from bacterial 16S rRNA gene datasets. Open Microbiol J 4:6Google Scholar
  35. 35.
    Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Wolcott RD, Gontcharova V, Sun Y, Dowd SE (2009) Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tag-encoded FLX and titanium amplicon pyrosequencing and metagenomic approaches. BMC Microbiol 9:226PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Suchodolski JS, Dowd SE, Westermarck E, Steiner JM, Wolcott RD, Spillmann T, Harmoinen JA (2009) The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing. BMC Microbiol 9:210PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Li W, Dowd SE, Scurlock B, Acosta-Martinez V, Lyte M (2009) Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol Behav 96(4–5):557–567PubMedCrossRefGoogle Scholar
  39. 39.
    Ishak HD, Plowes R, Sen R, Kellner K, Meyer E, Estrada DA, Dowd SE, Mueller UG (2011) Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb Ecol 61(4):821–831PubMedCrossRefGoogle Scholar
  40. 40.
    Nawrocki E, Kolbe D, Eddy S (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337PubMedCrossRefGoogle Scholar
  41. 41.
    Nawrocki EP, Eddy SR (2007) Query-dependent banding (QBD) for faster RNA similarity searches. PLoS Comput Biol 3:540–554CrossRefGoogle Scholar
  42. 42.
    Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes. In: Garrity GM (ed) Bergey's manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, New York, pp 4–23Google Scholar
  43. 43.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    R Development Core Team (2010) R: a language and environment for statistical computing. Vienna, Austria ISBN 3-900051-07-0: http://www.R-project.org
  45. 45.
    Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26(1):32–46Google Scholar
  46. 46.
    McCune B, Mefford MJ (2006) PC-ORDGoogle Scholar
  47. 47.
    McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, OregonGoogle Scholar
  48. 48.
    Biondini ME, Bonham CD, Redente EF (1985) Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity. Vegetation 60(1):25–36CrossRefGoogle Scholar
  49. 49.
    Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall ⁄ CRC, Boca RatonGoogle Scholar
  50. 50.
    Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35 °C. FEMS Microbiol Ecol 59(2):500–512PubMedCrossRefGoogle Scholar
  51. 51.
    Prescott LM, Harley JP, Klein DA (2004) Microbiology. 6th edition edn. McGraw-Hill Science/Engineering/Math.Google Scholar
  52. 52.
    Byrd JH, Castner JL (2010) Insects of forensic importance. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations, 2nd edn. CRC Press, Boca Raton, Florida, pp 39–126Google Scholar
  53. 53.
    Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26(3):129–135PubMedCrossRefGoogle Scholar
  54. 54.
    Stadler S, Stefanuto P-H, Brokl M, Forbes SL, Focant J-F (2012) Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography—time-of-flight mass spectrometry. Anal Chem 85(2):998–1005PubMedCrossRefGoogle Scholar
  55. 55.
    Dekeirsschieter J, Verheggen FJ, Gohy M, Hubrecht F, Bourguignon L, Lognay G, Haubruge E (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Science International 189(1-3):46–53PubMedCrossRefGoogle Scholar
  56. 56.
    Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre JA, NISC Comparative Sequencing Program (2008) A diversity profile of the human skin microbiota. Genome Res 18(7):1043–1050PubMedCrossRefGoogle Scholar
  57. 57.
    Sibley C, Church D, Surette M, Dowd S, Parkins M (2012) Pyrosequencing reveals the complex polymicrobial nature of invasive pyogenic infections: microbial constituents of empyema, liver abscess, and intracerebral abscess. European Journal of Clinical Microbiology & Infectious Diseases 31(10):2679–2691CrossRefGoogle Scholar
  58. 58.
    Ursell LK, Clemente JC, Rideout JR, Gevers D, Caporaso JG, Knight R (2012) The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allerg Clin Immunol 129(5):1204–1208CrossRefGoogle Scholar
  59. 59.
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, Lakshmanan A, Wade WG (2010) The human oral microbiome. J Bacteriol 192(19):5002–5017PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Carter DO, Tibbett M (2003) Taphonomic mycota: fungi with forensic potential. J For Sci 48(1):168–171Google Scholar
  61. 61.
    Mille–Lindblom C, Fischer H, Tranvik LJ (2006) Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 113(2):233–242CrossRefGoogle Scholar
  62. 62.
    Boer W, Folman LB, Summerbell RC, Boddy L (2006) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29(4):795–811CrossRefGoogle Scholar
  63. 63.
    Ferrandon D, Imler J-L, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7(11):862–874PubMedCrossRefGoogle Scholar
  64. 64.
    Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D, Royet J (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416(6881):640–644PubMedCrossRefGoogle Scholar
  65. 65.
    Gerardo NM, Altincicek B, Anselme C, Atamian H, Barribeau SM, Md V, Duncan EJ, Evans JD, Gabaldón T, Ghanim M, Heddi A, Kaloshian I, Latorre A, Moya A, Nakabachi A, Parker BJ, Pérez-Brocal V, Pignatelli M, Rahbé Y, Ramsey JS, Spragg CJ, Tamames J, Tamarit D, Tamborindeguy C, Vincent-Monegat C, Vilcinskas A (2010) Immunity and other defenses in pea aphids. Acyrthosiphon pisum Genome Biol 11:R21CrossRefGoogle Scholar
  66. 66.
    Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annual Rev Entomol 54:405–423CrossRefGoogle Scholar
  67. 67.
    Suwannapong G, Benbow M, Nieh J (2011) Biology of Thai honeybees: natural history and threats. In: Florio R (ed) Bees: biology, threats and colonies. Nova Science Publishers, Inc, Hauppauge, NY, pp 1–101Google Scholar
  68. 68.
    Rozen DE, Engelmoer DJP, Smiseth PT (2008) Antimicrobial strategies in burying beetles breeding on carrion. Proc Natl Acad Sci U S A 105(46):17890–17895PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Kerridge A, Lappin-Scott H, Stevens JR (2005) Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Med Vet Entomol 19:333–337PubMedCrossRefGoogle Scholar
  70. 70.
    Nigam Y, Bexfield A, Thomas S, Ratcliffe NA (2006) Maggot therapy: the science and implication for CAM—Part II—maggots combat infection. Evidence-Based Complement Alter Med 3(3):303–308CrossRefGoogle Scholar
  71. 71.
    Sherman RA, Hall MJR, Thomas S (2000) Medicinal maggots: an ancient remedy for some contemporary afflictions. Ann Rev Entomol 45(1):55–81CrossRefGoogle Scholar
  72. 72.
    Mumcuoglu KY, Miller J, Mumcuoglu M, Friger M, Tarshis M (2001) Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera: Calliphoridae). J Med Entomol 38(2):161–166PubMedCrossRefGoogle Scholar
  73. 73.
    Tomberlin JK, Crippen TL, Tarone AM, Singh B, Adams K, Rezenom YH, Benbow ME, Flores M, Longnecker M, Pechal JL, Russell DH, Beier RC, Wood TK (2012) Interkingdom responses of flies to bacteria mediated by fly physiology and bacterial quorum sensing. Anim Behav 84(6):1449–1456CrossRefGoogle Scholar
  74. 74.
    Ma Q, Fonseca A, Liu W, Fields AT, Pimsler ML, Spindola AF, Tarone AM, Crippen TL, Tomberlin JK, Wood TK (2012) Proteus mirabilis interkingdom swarming signals attract blow flies. The ISME Journal:1–11Google Scholar
  75. 75.
    Ieno EN, Amendt J, Fremdt H, Saveliev AA, Zuur AF (2010) Analysing forensic entomology data using additive mixed effects modelling. In: Current Concepts in Forensic Entomology. Springer, Dordrecht, pp 139–162. ISBN 978-1-4020-9683-9Google Scholar
  76. 76.
    Tarone AM, Foran DR (2008) Generalized additive models and Lucilia sericata growth: assessing confidence intervals and error rates in forensic entomology. J For Sci 53(4):942–948Google Scholar
  77. 77.
    Wells J, LaMotte LR (1995) Estimating maggot age from weight using inverse prediction. J For Sci 40:585–585Google Scholar
  78. 78.
    Clark K, Evans L, Wall R (2006) Growth rates of the blowfly, Lucilia sericata, on different body tissues. For Sci Int 156(2–3):145–149Google Scholar
  79. 79.
    Donovan SE, Hall MJR, Turner BD, Moncrieff CB (2006) Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med Vet Entomol 20(1):106–114PubMedCrossRefGoogle Scholar
  80. 80.
    Nabity PD, Higley LG, Heng-Moss TM (2006) Effects of temperature on development of Phormia regina (Diptera: Calliphoridae) and use of developmental data in determining time intervals in forensic entomology. J Med Entomol 43(6):1276–1286PubMedCrossRefGoogle Scholar
  81. 81.
    Tarone AM, Foran DR (2011) Gene Expression During Blow Fly Development: Improving the Precision of Age Estimates in Forensic Entomology. J For Sci 56:S112–S122Google Scholar
  82. 82.
    Michaud JP, Majka CG, Prive JP, Moreau G (2010) Natural and anthropogenic changes in the insect fauna associated with carcasses in the North American Maritime lowlands. Forensic Sci Int 202(1–3):64–70PubMedCrossRefGoogle Scholar
  83. 83.
    Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145PubMedCrossRefGoogle Scholar
  84. 84.
    Richards CS, Villet MH (2009) Data quality in thermal summation development models for forensically important blowflies. Med Vet Entomol 23(3):269–276PubMedCrossRefGoogle Scholar
  85. 85.
    Richards C, Paterson I, Villet M (2008) Estimating the age of immature Chrysomya albiceps (Diptera: Calliphoridae), correcting for temperature and geographical latitude. Int J Legal Med 122(4):271–279PubMedCrossRefGoogle Scholar
  86. 86.
    Boatright SA, Tomberlin JK (2010) Effects of temperature and tissue type of Cochliomyia macellaria (Diptera: Calliphoridae). Journal of Medical Entomology 37(5):917–923CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Entomology, 2475 TAMUTexas A&M UniversityCollege StationUSA
  2. 2.Department of Biology, 300 College ParkUniversity of DaytonDaytonUSA
  3. 3.Southern Plains Agricultural Research CenterCollege StationUSA
  4. 4.Department of Biology, 300 College ParkUniversity of DaytonDaytonUSA
  5. 5.Department of Entomology, 2475 TAMUTexas A&M UniversityCollege StationUSA
  6. 6.Molecular Research LPShallowaterUSA
  7. 7.Department of Entomology, 2475 TAMUTexas A&M UniversityCollege StationUSA

Personalised recommendations