International Journal of Legal Medicine

, Volume 127, Issue 5, pp 1023–1030 | Cite as

Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum

  • Pauline Saint-Martin
  • Camille Rérolle
  • Fabrice Dedouit
  • Loïc Bouilleau
  • Hervé Rousseau
  • Daniel Rougé
  • Norbert Telmon
Population Data


Age estimation of living individuals is of critical importance in forensic practice, especially because of the increased migration in developed countries. Recently, the contribution of magnetic resonance imaging (MRI) to age evaluation has been studied, as it seems to be an efficient technique to analyze growth plate maturation and epiphyseal fusion. We developed an MRI staging system for the distal tibial epiphysis and the calcaneal epiphysis and evaluated its reliability on 180 MRI scans of the ankle and foot in a sample of individuals aged from 8 to 25 years old. For both bones, the degree of union between the metaphysis and epiphysis was classified in three stages. Intra- and inter-observer variabilities were good, showing the validity and reproducibility of the method. Our results were consistent with data in the literature indicating that both epiphyses mature earlier in females than in males. Bayesian predictive probabilities were used to assess the validity of our method in estimating the age of an individual in relation to the 18-year threshold. MRI of the ankle and foot can be used in association with other methods to estimate age in living individuals.


Forensic anthropology Age estimation Ankle Calcaneum Transition analysis Bayesian predictive probabilities 



Sincere appreciation is expressed to Nina Crowte for her assistance in the preparation of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Schmeling A, Olze A, Reisinger W, König M, Geserick G (2003) Statistical analysis and verification of forensic age estimation of living persons in the Institute of Legal Medicine of the Berlin University Hospital Charité. Leg Med 5:S367–S371CrossRefGoogle Scholar
  2. 2.
    Schmeling A, Olze A, Reisinger W, Geserick G (2001) Age estimation of living people undergoing criminal proceedings. Lancet 358:89–90PubMedCrossRefGoogle Scholar
  3. 3.
    Schmeling A, Olze A, Reisinger W, Geserick G (2004) Forensic age diagnostics of living people undergoing criminal proceedings. Forensic Sci Int 144:243–245PubMedCrossRefGoogle Scholar
  4. 4.
    Schmeling A, Reisinger W, Geserick G, Olze A (2006) Age estimation of unaccompanied minors. Part I. General considerations. Forensic Sci Int 159(suppl 1):S61–S64PubMedCrossRefGoogle Scholar
  5. 5.
    Schmeling A, Geserick G, Reisinger W, Olze A (2007) Age estimation. Forensic Sci Int 165:178–181PubMedCrossRefGoogle Scholar
  6. 6.
    Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rösing FW, Rötzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122:457–460PubMedCrossRefGoogle Scholar
  7. 7.
    Schmeling A, Olze A, Reisinger W, Rosing FW, Geserick G (2003) Forensic age diagnostics of living individuals in criminal proceedings. Homo 54:162–169PubMedCrossRefGoogle Scholar
  8. 8.
    Bassed RB, Briggs C, Drummer OH (2012) The incidence of asymmetrical left/right skeletal and dental development in an Australian population and the effect of this on forensic age estimations. Int J Leg Med 126:251–257CrossRefGoogle Scholar
  9. 9.
    Thevissen PW, Kaur J, Willems G (2012) Human age estimation combining third molar and skeletal development. Int J Leg Med 126:285–292CrossRefGoogle Scholar
  10. 10.
    Chandrakanth HV, Kanchan T, Krishan K, Arun M, Kumar P (2012) Estimation of age from human sternum: an autopsy study on a sample from South India. Int J Leg Med 126:863–868CrossRefGoogle Scholar
  11. 11.
    Cameriere R, De Luca S, De Angelis D, Merelli V, Giuliodori A, Cingolani M, Cattaneo C, Ferrante L (2012) Reliability of Schmeling's stages of ossification of medial clavicular epiphyses and its validity to asses 18 years of age in living subjects. Int J Leg Med 126:923–932CrossRefGoogle Scholar
  12. 12.
    Quirmbach F, Ramsthaler F, Verhoff MA (2009) Evaluation of the ossification of the medial clavicular epiphysis with a digital ultrasonic system to determine the age threshold of 21 years. Int J Leg Med 123:241–245CrossRefGoogle Scholar
  13. 13.
    Schmidt S, Schmeling A, Zwiesigk P, Pfeiffer H, Schulz R (2011) Sonographic evaluation of apophyseal ossification of the iliac crest in forensic age diagnostics in living individuals. Int J Legal Med 125:271–276PubMedCrossRefGoogle Scholar
  14. 14.
    Schmidt S, Mühler M, Schmeling A, Reisinger W, Schulz R (2007) Magnetic resonance imaging of the clavicular ossification. Int J Legal Med 121:321–324PubMedCrossRefGoogle Scholar
  15. 15.
    Hillewig E, De Tobel J, Cuche O, Vandemaele P, Piette M, Verstraete K (2011) Magnetic resonance imaging of the medial extremity of the clavicle in forensic bone age determination: a new four-minute approach. Eur Radiol 21:757–767PubMedCrossRefGoogle Scholar
  16. 16.
    Dvorak J (2009) Detecting over-age players using wrist MRI: science partnering with sport to ensure fair play. Br J Sports Med 43:884–885PubMedCrossRefGoogle Scholar
  17. 17.
    Dvorak J, George J, Junge A, Hodler J (2007) Age determination by magnetic resonance imaging of the wrist in adolescent male football players. Br J Sports Med 41:45–52PubMedCrossRefGoogle Scholar
  18. 18.
    Dvorak J, George J, Junge A, Hodler J (2007) Application of MRI of the wrist for age determination in international U-17 soccer competitions. Br J Sports Med 41:497–500PubMedCrossRefGoogle Scholar
  19. 19.
    Jopp E, Schröder I, Maas R, Adam G, Püschel K, Hertzog C (2010) Proximale Tibiaepiphyse im Magnetresonanztomogramm. Rechtsmedizin 20:464–468CrossRefGoogle Scholar
  20. 20.
    Dedouit F, Auriol J, Rousseau H, Rougé D, Crubézy E (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217:232.e1–232.e7CrossRefGoogle Scholar
  21. 21.
    Crowder C, Austin D (2005) Age ranges of epiphyseal fusion in the distal tibia and fibula of contemporary males and females. J Forensic Sci 50:1001–1007PubMedCrossRefGoogle Scholar
  22. 22.
    Flecker H (1932) Roentgenographic observations of the times of appearance of epiphyses and their fusion with the diaphyses. J Anat 67(Pt 1):118–164PubMedGoogle Scholar
  23. 23.
    Ogden JA, McCarthy SM (1983) Radiology of postnatal skeletal development. VIII. Distal tibia and fibula. Skeletal Radiol 10:209–220PubMedCrossRefGoogle Scholar
  24. 24.
    Banerjee KK, Agarwal BB (1998) Estimation of age from epiphyseal union at the wrist and ankle joints in the capital city of India. Forensic Sci Int 98:31–39PubMedCrossRefGoogle Scholar
  25. 25.
    Hoerr NL, Pyle SI, Francis CC (1962) Radiographic atlas of skeletal development of the foot and ankle—a standard of reference. Thomas, Springfield, ILGoogle Scholar
  26. 26.
    McKern TW, Stewart TD (1957) Skeletal age changes in young American males analyzed from the standpoint of age determination. Technical Report EP-45. Environmental Protection Research Division, HQ=Quartermaster Research and Development Command, United States Army, Natick, MAGoogle Scholar
  27. 27.
    Bass W (2005) Human osteology—a laboratory and field manual of the human skeleton. Archaeological Society, Columbia, MOGoogle Scholar
  28. 28.
    Scheuer L, Black SM (2000) Developmental juvenile osteology. Elsevier/Academic, AmsterdamGoogle Scholar
  29. 29.
    Ferembach D, Schwidetzky I, Stloukal M (1979) Recommandations pour determiner l’âge et le sexe sur le squelette. Bull Mém Soc Anthrop Paris 6:7–45CrossRefGoogle Scholar
  30. 30.
    R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-9000051-07-0
  31. 31.
    Cohen J (1960) A coefficient of agreement for normal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  32. 32.
    Hoppa RD, Vaupel JW (2002) Paleodemography. Age distributions from skeletal samples. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. 33.
    Hartigan JA (1983) Bayes theory. Springer, New YorkCrossRefGoogle Scholar
  34. 34.
    Tersigni-Tarrant MT, Shirley NR (2012) Forensic anthropology: an introduction. CRCGoogle Scholar
  35. 35.
    Bokariya P, Chowdhary DS, Tirpude BH, Sonatakke B, Wankhede V, Tarnekar A (2010) Age determination in girls of Jodhpur region by epiphyseal union of bones at ankle joint. J Indian Acad Forensic Med 32:42–44Google Scholar
  36. 36.
    Davies DA, Parsons FG (1927) The age order of the appearance and union of the normal epiphyses as seen by X-rays. J Anat 62:58–71PubMedGoogle Scholar
  37. 37.
    Cardoso HF (2008) Epiphyseal union at the innominate and lower limb in a modern Portuguese skeletal sample, and age estimation in adolescent and young adult male and female skeletons. Am J Phys Anthropol 135:161–170PubMedCrossRefGoogle Scholar
  38. 38.
    Iscan MY (1989) Age markers in the human skeleton. Thomas, Springfield, ILGoogle Scholar
  39. 39.
    O'Connor JE, Bogue C, Spence LD, Last J (2008) A method to establish the relationship between chronological age and stage of union from radiographic assessment of epiphyseal fusion at the knee: an Irish population study. J Anat 212:198–209PubMedCrossRefGoogle Scholar
  40. 40.
    Coqueugniot H, Weaver TD (2007) Brief communication: infracranial maturation in the skeletal collection from Coimbra, Portugal: new aging standards for epiphyseal union. Am J Phys Anthropol 134:424–437PubMedCrossRefGoogle Scholar
  41. 41.
    Schaefer MC, Black SM (2007) Epiphyseal union sequencing: aiding in the recognition and sorting of commingled remains. J Forensic Sci 52:277–285PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pauline Saint-Martin
    • 1
    • 2
  • Camille Rérolle
    • 1
    • 2
  • Fabrice Dedouit
    • 1
    • 3
  • Loïc Bouilleau
    • 4
  • Hervé Rousseau
    • 5
  • Daniel Rougé
    • 1
    • 3
  • Norbert Telmon
    • 1
    • 3
  1. 1.Laboratoire d’Anthropobiologie Moléculaire et Imagerie de SynthèseAMIS UMR 5288 CNRSToulouse CedexFrance
  2. 2.Institut Médico-LégalHôpital TrousseauTours Cedex 9France
  3. 3.Service de Médecine LégaleCentre Hospitalier Universitaire RangueilToulouse Cedex 4France
  4. 4.CHRU de ToursPôle d’Imagerie MédicaleTours Cedex 9France
  5. 5.Service de RadiologieCentre Hospitalier Universitaire RangueilToulouse Cedex 4France

Personalised recommendations