Advertisement

International Journal of Legal Medicine

, Volume 126, Issue 6, pp 901–916 | Cite as

Haplogrouping mitochondrial DNA sequences in Legal Medicine/Forensic Genetics

  • Hans-Jürgen BandeltEmail author
  • Mannis van Oven
  • Antonio Salas
Original Article

Abstract

Haplogrouping refers to the classification of (partial) mitochondrial DNA (mtDNA) sequences into haplogroups using the current knowledge of the worldwide mtDNA phylogeny. Haplogroup assignment of mtDNA control-region sequences assists in the focused comparison with closely related complete mtDNA sequences and thus serves two main goals in forensic genetics: first is the a posteriori quality analysis of sequencing results and second is the prediction of relevant coding-region sites for confirmation or further refinement of haplogroup status. The latter may be important in forensic casework where discrimination power needs to be as high as possible. However, most articles published in forensic genetics perform haplogrouping only in a rudimentary or incorrect way. The present study features PhyloTree as the key tool for assigning control-region sequences to haplogroups and elaborates on additional Web-based searches for finding near-matches with complete mtDNA genomes in the databases. In contrast, none of the automated haplogrouping tools available can yet compete with manual haplogrouping using PhyloTree plus additional Web-based searches, especially when confronted with artificial recombinants still present in forensic mtDNA datasets. We review and classify the various attempts at haplogrouping by using a multiplex approach or relying on automated haplogrouping. Furthermore, we re-examine a few articles in forensic journals providing mtDNA population data where appropriate haplogrouping following PhyloTree immediately highlights several kinds of sequence errors.

Keywords

Mitochondrial DNA Forensics mtDNA database Haplogroup PhyloTree Multiplex genotyping mtDNAmanager MitoTool HaploGrep Sequence error Quality control 

Notes

Acknowledgements

The Ministerio de Ciencia e Innovación (SAF2008-02971 and SAF2011-26983) and the European project “A European Initial Training Network on the history, archaeology, and new genetics of the Trans-Atlantic slave trade (EUROTAST)” (EU project: 290344) gave support to AS. MvO was supported in part by the Netherlands Forensic Institute (NFI) and by a grant from the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) within the framework of the Forensic Genomics Consortium Netherlands (FGCN).

Supplementary material

414_2012_762_MOESM1_ESM.doc (157 kb)
ESM 1 (DOC 157 kb)
414_2012_762_MOESM2_ESM.xlsx (79 kb)
ESM 2 (XLSX 78 kb)

References

  1. 1.
    Parson W, Dür A (2007) EMPOP—a forensic mtDNA database. Forensic Sci Int Genet 1(2):88–92PubMedCrossRefGoogle Scholar
  2. 2.
    van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30(2):E386–E394PubMedCrossRefGoogle Scholar
  3. 3.
    Gómez-Carballa A, Ignacio-Veiga A, Álvarez-Iglesias V, Pastoriza-Mourelle A, Ruiz Y, Pineda L, Carracedo Á, Salas A (2012) A melting pot of multicontinental mtDNA lineages in admixed Venezuelans. Am J Phys Anthropol 147(1):78–87PubMedCrossRefGoogle Scholar
  4. 4.
    Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23(2):147PubMedCrossRefGoogle Scholar
  5. 5.
    Behar DM, Rosset S, Blue-Smith J, Balanovsky O, Tzur S, Comas D, Mitchell RJ, Quintana-Murci L, Tyler-Smith C, Wells RS (2007) The Genographic Project public participation mitochondrial DNA database. PLoS Genet 3(6):e104PubMedCrossRefGoogle Scholar
  6. 6.
    Bandelt HJ, Quintana-Murci L, Salas A, Macaulay V (2002) The fingerprint of phantom mutations in mitochondrial DNA data. Am J Hum Genet 71(5):1150–1160PubMedCrossRefGoogle Scholar
  7. 7.
    Brandstätter A, Sanger T, Lutz-Bonengel S, Parson W, Beraud-Colomb E, Wen B, Kong Q-P, Bravi CM, Bandelt HJ (2005) Phantom mutation hotspots in human mitochondrial DNA. Electrophoresis 26(18):3414–3429PubMedCrossRefGoogle Scholar
  8. 8.
    Salas A, Carracedo Á, Macaulay V, Richards M, Bandelt HJ (2005) A practical guide to mitochondrial DNA error prevention in clinical, forensic, and population genetics. Biochem Biophys Res Commun 335(3):891–899PubMedCrossRefGoogle Scholar
  9. 9.
    Salas A, Bandelt HJ, Macaulay V, Richards MB (2007) Phylogeographic investigations: the role of trees in forensic genetics. Forensic Sci Int 168(1):1–13PubMedCrossRefGoogle Scholar
  10. 10.
    Bandelt HJ, Salas A, Taylor RW, Yao YG (2009) The exaggerated status of “novel” and “pathogenic” mtDNA sequence variants due to inadequate database searches. Hum Mutat 30(2):191–196PubMedCrossRefGoogle Scholar
  11. 11.
    Soares P, Ermini L, Thomson N, Mormina M, Rito T, Röhl A, Salas A, Oppenheimer S, Macaulay V, Richards MB (2009) Correcting for purifying selection: an improved human mitochondrial molecular clock. Am J Hum Genet 84(6):740–759PubMedCrossRefGoogle Scholar
  12. 12.
    Cardoso S, Villanueva-Millan MJ, Valverde L, Odriozola A, Aznar JM, Pineiro-Hermida S, de Pancorbo MM (2012) Mitochondrial DNA control region variation in an autochthonous Basque population sample from the Basque Country. Forensic Sci Int Genet 6(4):e106–e108PubMedCrossRefGoogle Scholar
  13. 13.
    Farris JS (1970) Methods for computing Wagner Trees. Syst Biol 1(19):83–92Google Scholar
  14. 14.
    Bandelt H-J, Salas A, Bravi CM (2006) What is a 'novel' mtDNA mutation―and does 'novelty' really matter? J Hum Genet 51(12):1073–1082PubMedCrossRefGoogle Scholar
  15. 15.
    Bandelt HJ, Yao YG, Salas A (2008) The search of 'novel' mtDNA mutations in hypertrophic cardiomyopathy: MITOMAPping as a risk factor. Int J Cardiol 126(3):439–442PubMedCrossRefGoogle Scholar
  16. 16.
    Rakha A, Shin KJ, Yoon JA, Kim NY, Siddique MH, Yang IS, Yang WI, Lee HY (2011) Forensic and genetic characterization of mtDNA from Pathans of Pakistan. Int J Legal Med 125(6):841–848PubMedCrossRefGoogle Scholar
  17. 17.
    Yao YG, Kong QP, Man XY, Bandelt HJ, Zhang YP (2003) Reconstructing the evolutionary history of China: a caveat about inferences drawn from ancient DNA. Mol Biol Evol 20(2):214–219PubMedCrossRefGoogle Scholar
  18. 18.
    Umetsu K, Tanaka M, Yuasa I, Adachi N, Miyoshi A, Kashimura S, Park KS, Wei YH, Watanabe G, Osawa M (2005) Multiplex amplified product-length polymorphism analysis of 36 mitochondrial single-nucleotide polymorphisms for haplogrouping of East Asian populations. Electrophoresis 26(1):91–98PubMedCrossRefGoogle Scholar
  19. 19.
    Álvarez-Iglesias V, Jaime JC, Carracedo Á, Salas A (2007) Coding region mitochondrial DNA SNPs: targeting East Asian and Native American haplogroups. Forensic Sci Int Genet 1:44–55PubMedCrossRefGoogle Scholar
  20. 20.
    Quintáns B, Álvarez-Iglesias V, Salas A, Phillips C, Lareu MV, Carracedo Á (2004) Typing of mitochondrial DNA coding region SNPs of forensic and anthropological interest using SNaPshot minisequencing. Forensic Sci Int 140(2–3):251–257PubMedCrossRefGoogle Scholar
  21. 21.
    van Oven M, Vermeulen M, Kayser M (2011) Multiplex genotyping system for efficient inference of matrilineal genetic ancestry with continental resolution. Investig Genet 2(1):6PubMedCrossRefGoogle Scholar
  22. 22.
    Álvarez-Iglesias V, Barros F, Carracedo Á, Salas A (2008) Minisequencing mitochondrial DNA pathogenic mutations. BMC Med Genet 9:26PubMedCrossRefGoogle Scholar
  23. 23.
    Salas A, Amigo J (2010) A reduced number of mtSNPs saturates mitochondrial DNA haplotype diversity of worldwide population groups. PLoS One 5(5):e10218PubMedCrossRefGoogle Scholar
  24. 24.
    Brandstätter A, Salas A, Niederstätter H, Gassner C, Carracedo Á, Parson W (2006) Dissection of mitochondrial superhaplogroup H using coding region SNPs. Electrophoresis 27(13):2541–2550PubMedCrossRefGoogle Scholar
  25. 25.
    Álvarez-Iglesias V, Mosquera-Miguel A, Cerezo M, Quintáns B, Zarrabeitia MT, Cuscó I, Lareu MV, García O, Pérez-Jurado L, Carracedo Á, Salas A (2009) New population and phylogenetic features of the internal variation within mitochondrial DNA macro-haplogroup R0. PLoS One 4(4):e5112PubMedCrossRefGoogle Scholar
  26. 26.
    Álvarez-Iglesias V, Salas A, Cerezo M, Ramos-Luis E, Jaime JC, Lareu MV, Carracedo Á (2006) Genotyping coding region mtDNA SNPs for Asian and Native American haplogroup assignation. Int Congress Series 11(1288):4–6CrossRefGoogle Scholar
  27. 27.
    Crespillo M, Paredes MR, Prieto L, Montesino M, Salas A, Albarrán C, Álvarez-Iglesias V, Amorin A, Berniell-Lee G, Brehm A, Carril JC, Corach D, Cuevas N, Di Lonardo AM, Doutremepuich C, Espinheira RM, Espinoza M, Gómez F, González A, Hernández A, Hidalgo M, Jimenez M, Leite FP, López AM, López-Soto M, Lorente JA, Pagano S, Palacio AM, Pestano JJ, Pinheiro MF, Raimondi E, Ramon MM, Tovar F, Vidal-Rioja L, Vide MC, Whittle MR, Yunis JJ, Garcia-Hirschfel J (2006) Results of the 2003-2004 GEP-ISFG collaborative study on mitochondrial DNA: focus on the mtDNA profile of a mixed semen-saliva stain. Forensic Sci Int 160(2–3):157–167PubMedCrossRefGoogle Scholar
  28. 28.
    Ballantyne KN, van Oven M, Ralf A, Stoneking M, Mitchell RJ, van Oorschot RA, Kayser M (2012) MtDNA SNP multiplexes for efficient inference of matrilineal genetic ancestry within Oceania. Forensic Sci Int Genet 6(4):425–436PubMedCrossRefGoogle Scholar
  29. 29.
    Cerezo M, Černý V, Carracedo Á, Salas A (2009) Applications of MALDI-TOF MS to large-scale human mtDNA population-based studies. Electrophoresis 30(21):3665–3673PubMedCrossRefGoogle Scholar
  30. 30.
    Zuccarelli G, Alechine E, Caputo M, Bobillo C, Corach D, Sala A (2011) Rapid screening for Native American mitochondrial and Y-chromosome haplogroups detection in routine DNA analysis. Forensic Sci Int Genet 5(2):105–108PubMedCrossRefGoogle Scholar
  31. 31.
    Köhnemann S, Pfeiffer H (2011) Application of mtDNA SNP analysis in forensic casework. Forensic Sci Int Genet 5(3):216–221PubMedCrossRefGoogle Scholar
  32. 32.
    Yang Y, Zhang P, He Q, Zhu Y, Yang X, Lv R, Chen J (2011) A new strategy for the discrimination of mitochondrial DNA haplogroups in Han population. J Forensic Sci 56(3):586–590PubMedCrossRefGoogle Scholar
  33. 33.
    Bandelt HJ, Parson W (2004) Fehlerquellen mitochondrialer DNS-Datensätze und Evaluation der mtDNS-Datenbank D-Loop-BASE. Rechtsmedizin 14:251–257CrossRefGoogle Scholar
  34. 34.
    Zgonjanin D, Veselinović I, Kubat M, Furač I, Antov M, Lončar E, Tasić M, Vuković R, Omorjan R (2010) Sequence polymorphism of the mitochondrial DNA control region in the population of Vojvodina Province, Serbia. Leg Med (Tokyo) 12(2):104–107CrossRefGoogle Scholar
  35. 35.
    Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci U S A 100(1):171–176PubMedCrossRefGoogle Scholar
  36. 36.
    Gonder MK, Mortensen HM, Reed FA, de Sousa A, Tishkoff SA (2007) Whole-mtDNA genome sequence analysis of ancient African lineages. Mol Biol Evol 24(3):757–768PubMedCrossRefGoogle Scholar
  37. 37.
    Yao Y-G, Salas A, Logan I, Bandelt H-J (2009) mtDNA data mining in GenBank needs surveying. Am J Hum Genet 85(6):929–933; author reply 933Google Scholar
  38. 38.
    Chandrasekar A, Kumar S, Sreenath J, Sarkar BN, Urade BP, Mallick S, Bandopadhyay SS, Barua P, Barik SS, Basu D, Kiran U, Gangopadhyay P, Sahani R, Prasad BVR, Gangopadhyay S, Lakshmi GR, Ravuri RR, Padmaja K, Venugopal PN, Sharma MB, Rao VR (2009) Updating phylogeny of mitochondrial DNA macrohaplogroup M in India: dispersal of modern human in South Asian corridor. PLoS One 4(10):e7447PubMedCrossRefGoogle Scholar
  39. 39.
    Sekiguchi K, Imaizumi K, Fujii K, Mizuno N, Ogawa Y, Akutsu T, Nakahara H, Kitayama T, Kasai K (2008) Mitochondrial DNA population data of HV1 and HV2 sequences from Japanese individuals. Leg Med (Tokyo) 10(5):284–286CrossRefGoogle Scholar
  40. 40.
    Parson W, Bandelt HJ (2007) Extended guidelines for mtDNA typing of population data in forensic science. Forensic Sci Int Genet 1:13–19PubMedCrossRefGoogle Scholar
  41. 41.
    Bandelt HJ, Kong QP, Parson W, Salas A (2005) More evidence for non-maternal inheritance of mitochondrial DNA? J Med Genet 42:957–960PubMedCrossRefGoogle Scholar
  42. 42.
    Bandelt HJ, Salas A, Bravi CM (2004) Problems in FBI mtDNA database. Science 305(5689):1402–1404PubMedCrossRefGoogle Scholar
  43. 43.
    Bandelt HJ, Salas A, Lutz-Bonengel S (2004) Artificial recombination in forensic mtDNA population databases. Int J Legal Med 118(5):267–273PubMedCrossRefGoogle Scholar
  44. 44.
    Afonso-Costa H, Carvalho M, Lopes V, Balsa F, Bento AM, Serra A, Andrade L, Anjos MJ, Vide MC, Pantoja S, Vieira DN, Corte-Real F (2010) Mitochondrial DNA sequence analysis of a native Bolivian population. J Forensic Leg Med 17(5):247–253PubMedCrossRefGoogle Scholar
  45. 45.
    Karachanak S, Carossa V, Nesheva D, Olivieri A, Pala M, Hooshiar Kashani B, Grugni V, Battaglia V, Achilli A, Yordanov Y, Galabov AS, Semino O, Toncheva D, Torroni A (2012) Bulgarians vs the other European populations: a mitochondrial DNA perspective. Int J Legal Med 126(4):497–503PubMedCrossRefGoogle Scholar
  46. 46.
    Mikkelsen M, Rockenbauer E, Sørensen E, Rasmussen M, Børsting C, Morling N (2008) A mitochondrial DNA SNP multiplex assigning Caucasians into 36 haplo- and subhaplogroups. Forensic Sci Int: Genet Supplement Series 1(1):287–289CrossRefGoogle Scholar
  47. 47.
    Mikkelsen M, Rockenbauer E, Demir H, Børsting C, Morling N (2011) Frequencies of 33 coding region mitochondrial SNPs in a Danish and a Turkish population. Forensic Sci Int Genet 5(5):559–560PubMedCrossRefGoogle Scholar
  48. 48.
    Mikkelsen M, Sørensen E, Rasmussen EM, Morling N (2010) Mitochondrial DNA HV1 and HV2 variation in Danes. Forensic Sci Int Genet 4(4):e87–e88PubMedCrossRefGoogle Scholar
  49. 49.
    Zimmermann B, Bodner M, Amory S, Fendt L, Röck A, Horst D, Horst B, Sanguansermsri T, Parson W, Brandstätter A (2009) Forensic and phylogeographic characterization of mtDNA lineages from northern Thailand (Chiang Mai). Int J Legal Med 123(6):495–501PubMedCrossRefGoogle Scholar
  50. 50.
    Lee HY, Song I, Ha E, Cho SB, Yang WI, Shin KJ (2008) mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences. BMC Bioinforma 9:483CrossRefGoogle Scholar
  51. 51.
    Monson KL, Miller KWP, Wilson MR, DiZinno JA, Budowle B (2002) The mtDNA Population Database: an integrated software and database resource for forensic comparison. Forensic Sci Commun 4:no 2Google Scholar
  52. 52.
    Fan L, Yao YG (2010) MitoTool: a web server for the analysis and retrieval of human mitochondrial DNA sequence variations. Mitochondrion 11(2):351–356PubMedCrossRefGoogle Scholar
  53. 53.
    Kloss-Brandstätter A, Pacher D, Schonherr S, Weissensteiner H, Binna R, Specht G, Kronenberg F (2011) HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum Mutat 32(1):25–32PubMedCrossRefGoogle Scholar
  54. 54.
    Kong QP, Bandelt HJ, Sun C, Yao YG, Salas A, Achilli A, Wang CY, Zhong L, Zhu CL, Wu SF, Torroni A, Zhang YP (2006) Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet 15(13):2076–2086PubMedCrossRefGoogle Scholar
  55. 55.
    Scheible M, Alenizi M, Sturk-Andreaggi K, Coble MD, Ismael S, Irwin JA (2011) Mitochondrial DNA control region variation in a Kuwaiti population sample. Forensic Sci Int Genet 5(4):e112–e113PubMedCrossRefGoogle Scholar
  56. 56.
    van Oven M (2010) Revision of the mtDNA tree and corresponding haplogroup nomenclature. Proc Natl Acad Sci U S A 107(11):E38–E39, author reply e40-31PubMedCrossRefGoogle Scholar
  57. 57.
    Zhao M, Kong QP, Wang HW, Peng MS, Xie XD, Wang WZ, Jiayang DJG, Cai MC, Zhao SN, Cidanpingcuo TYQ, Wu SF, Yao YG, Bandelt HJ, Zhang YP (2009) Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau. Proc Natl Acad Sci U S A 106(50):21230–21235PubMedCrossRefGoogle Scholar
  58. 58.
    Kong QP, Salas A, Sun C, Fuku N, Tanaka M, Zhong L, Wang CY, Yao YG, Bandelt HJ (2008) Distilling artificial recombinants from large sets of complete mtDNA genomes. PLoS One 3(8):e3016PubMedCrossRefGoogle Scholar
  59. 59.
    Parson W, Roewer L (2010) Publication of population data of linearly inherited DNA markers in the International Journal of Legal Medicine. Int J Legal Med 124(5):505–509PubMedCrossRefGoogle Scholar
  60. 60.
    Carracedo Á, Butler JM, Gusmão L, Parson W, Roewer L, Schneider PM (2010) Publication of population data for forensic purposes. Forensic Sci Int Genet 4(3):145–147PubMedCrossRefGoogle Scholar
  61. 61.
    Nur Haslindawaty AR, Panneerchelvam S, Edinur HA, Norazmi MN, Zafarina Z (2010) Sequence polymorphisms of mtDNA HV1, HV2, and HV3 regions in the Malay population of Peninsular Malaysia. Int J Legal Med 124(5):415–426PubMedCrossRefGoogle Scholar
  62. 62.
    Irwin JA, Saunier JL, Beh P, Strouss KM, Paintner CD, Parsons TJ (2009) Mitochondrial DNA control region variation in a population sample from Hong Kong, China. Forensic Sci Int Genet 3(4):e119–e125PubMedCrossRefGoogle Scholar
  63. 63.
    Malyarchuk B, Derenko M, Grzybowski T, Perkova M, Rogalla U, Vanecek T, Tsybovsky I (2010) The peopling of Europe from the mitochondrial haplogroup U5 perspective. PLoS One 5(4):e10285PubMedCrossRefGoogle Scholar
  64. 64.
    Tillmar AO, Coble MD, Wallerstrom T, Holmlund G (2010) Homogeneity in mitochondrial DNA control region sequences in Swedish subpopulations. Int J Legal Med 124(2):91–98PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hans-Jürgen Bandelt
    • 1
    Email author
  • Mannis van Oven
    • 2
  • Antonio Salas
    • 3
  1. 1.Department of MathematicsUniversity of HamburgHamburgGermany
  2. 2.Department of Forensic Molecular Biology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
  3. 3.Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de MedicinaUniversidade de Santiago de CompostelaGaliciaSpain

Personalised recommendations