International Journal of Legal Medicine

, Volume 127, Issue 2, pp 395–404

Toxicogenetics—cytochrome P450 microarray analysis in forensic cases focusing on morphine/codeine and diazepam

Original Article
  • 602 Downloads

Abstract

Genetic polymorphisms in cytochrome P 450 (CYP) enzymes could lead to a phenotype with altered enzyme activity. In pharmacotherapy, genotype-based dose recommendations achieved great importance for several drugs. In our pilot study, we ask if these genetic tests should be applied to forensic problems as a matter of routine. Starting from 2004 through 2008, we screened routine cases for samples where the relation of parent compound to metabolite(s) (P/M ratio), particularly morphine to codeine ratios and diazepam to its metabolites, was noticeable or not consistent with the information provided by the defendants. We found 11 samples with conspicuous results. These were analyzed for polymorphisms of the CYP 2D6 and 2C19 genes using the Roche AmpliChip Cytochrome P450 Genotyping test. If not previously conducted, a general unknown analysis by gas chromatography/mass spectrometry (GC/MS) was additionally carried out. For CYP 2D6, we found two cases with the genotype poor metabolizer (PM), three cases with heterozygote extensive metabolizer genotype classified as an intermediate metabolizer (IM) with probably reduced enzyme activities, but no ultrarapid metabolizer genotype. For CYP 2C19, two cases were characterized as IM phenotypes, with no PM found. Once we achieved no appropriate amounts of DNA, one case was excluded after GC/MS analysis. Only in one case could the polymorphism clearly explain the changes in drug metabolism. More frequently, a drug–drug interaction was thought to have a stronger impact. Additionally, our results suggest that IM genotypes may be more relevant than previously suspected. With respect to the small number of cases in which we thought a genotyping would be helpful, we conclude that the overall relevance of toxicogenetics in forensic problems is moderate. However, in some individual cases, a genotyping may provide new insight.

Keywords

Pharmacogenetics Toxicogenetics Polymorphism Forensic toxicology Microarray CYP 2D6 CYP 2C19 

References

  1. 1.
    Rogers JF, Nafziger AN, Bertino JS (2002) Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome p450-metabolized drugs. Am J Med 113:746–750PubMedCrossRefGoogle Scholar
  2. 2.
    Flockhart, DA (2009) Drug interactions: cytochrome P450 drug interaction table (2009, Last Updated On: January 25, 2012) Indiana University School of Medicine. At :http://medicine.iupui.edu/clinpharm/ddis/table.aspx. Accessed 15 Feb 2012
  3. 3.
    Benet LZ, Kroetz DL, Sheiner LB (1996) Pharmacogenetics. In: Hardman JG, Goodman GA, Limbirds LE (eds) Goodman and Gilman's the pharmacological basis of therapeutics, vol 9. McGraw-Hill, New York, pp 3–27Google Scholar
  4. 4.
    Bertilsson L, Dahl M-L, Sjöqvist F, Åberg-Wistedt A, Humble M, Johansson I, Lundqvist E, Ingelman-Sundberg M (1993) Molecular basis for rational megaprescribing in ultrarapid hydroxyltors of debrisoquine. Lancet 341:63PubMedCrossRefGoogle Scholar
  5. 5.
    de Leon J, Susce M, Johnson M, Hardin M, Maw L, Shao A, Allen ACP, Chiafari FA, Hillman G, Nikoloff M (2009) DNA microarray technology in the clinical environment: the ampliChip CYP450 test for CYP2D6 and CYP2C19 genotyping. CNS Spectrums 14(1):19–34PubMedGoogle Scholar
  6. 6.
    Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491PubMedCrossRefGoogle Scholar
  7. 7.
    Kirchheiner J, Brøsen K, Dahl M, Gram L, Kasper S, Roots I, Sjöqvist F, Spina E, Brockmöller J (2001) CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 104(3):173–193PubMedCrossRefGoogle Scholar
  8. 8.
    Zaridze DG (2008) Molecular epidemiology of cancer. Biochemistry-Russia 73(5):532–542, ReviewGoogle Scholar
  9. 9.
    Kadlubar FF, Butler MA, Kaderlik KR, Chou H-C, Lang NP (1992) Polymorphisms for aromatic amine metabolism in humans: relevance for human carcinogenesis. Environ Heal Perspect 98:69–74CrossRefGoogle Scholar
  10. 10.
    Mohamed AS, Chia S (2008) Interethnic variability of plasma paraoxonase (PON1) activity towards organophosphates and PON1 polymorphisms among Asian populations—a short review. Ind Heal 46(4):309–317, ReviewCrossRefGoogle Scholar
  11. 11.
    Koski A, Ojanperä I, Sistonen J, Vuori E, Sajantila A (2007) A fatal doxepin poisoning associated with a defective CYP2D6 genotype. Am J Forensic Med Pathol 28(3):259–261PubMedCrossRefGoogle Scholar
  12. 12.
    Sallee FR, DeVane CL, Ferrell RE (2000) Fluoxetine-related death in a child with cytochrome P-450 2D6 genetic deficiency. J Child Adolesc Psychopharmacol 10:27–34PubMedCrossRefGoogle Scholar
  13. 13.
    Madadi P, Hildebrandt D, Gong I, Schwarz U, Ciszkowski C, Ross C, Sistonen J, Carleton B, Hayden M, Lauwers A, Koren G (2010) Fatal hydrocodone overdose in a child: pharmacogenetics and drug interactions. Pediatrics 126(4):e986–e989, Epub2010 Sep 2013PubMedCrossRefGoogle Scholar
  14. 14.
    Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P, Desmeules J (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351(27):2827–2831PubMedCrossRefGoogle Scholar
  15. 15.
    Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder S (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368(9536):704PubMedCrossRefGoogle Scholar
  16. 16.
    Koski A, Sistonen J, Ojanperä I, Gergov M, Vuori E, Sajantila A (2006) CYP2D6 and CYP2C19 genotypes and amitriptyline metabolite ratios in a series of medicolegal autopsies. Forensic Sci Int 158:177–183PubMedCrossRefGoogle Scholar
  17. 17.
    Jannetto PJ, Wong SH, Gock SB, Laleli-Sahin E, Schur BC, Jentzen JM (2002) Pharmacogenomics as molecular autopsy for postmortem forensic toxicology: genotyping cytochrome P450 2D6 for oxycodone cases. J Anal Toxicol 26:438–447PubMedGoogle Scholar
  18. 18.
    Levo A, Koski A, Ojanperä I, Vuori E, Sajantila A (2003) Post-mortem SNP analysis of CYP2D6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci Int 135:9–15PubMedCrossRefGoogle Scholar
  19. 19.
    Holmgren P, Carlsson B, Zackrisson A-L, Lindblom B, Dahl M-L, Scordo MG, Druid H, Ahlner J (2004) Enantioselective analysis of citalopram and its metabolites in postmortem blood and genotyping for CYP2D6 and CYP2C19. J Anal Toxicol 28:94–104PubMedGoogle Scholar
  20. 20.
    Zackrisson A, Holmgren P, Gladh A, Ahlner J, Lindblom B (2004) Fatal intoxication cases: cytochrome P450 2D6 and 2C19 genotype distributions. Eur J Clin Pharmacol 60(8):547–552PubMedCrossRefGoogle Scholar
  21. 21.
    Druid H, Holmgren P, Carlsson B, Ahlner J (1999) Cytochrome P450 2D6 (CYP2D6) genotyping on postmortem blood as a supplementary tool for interpretation of forensic toxicological results. For Sci Int 99:25–34Google Scholar
  22. 22.
    Jin M, Gock SB, Jannetto PJ, Jentzen JM, Wong SH (2005) Pharmacogenomics as molecular autopsy for forensic toxicology: genotyping cytochrome P450 3A4*1B and 3A5*3 for 25 fentanyl cases. J Anal Toxicol 29:590–598PubMedGoogle Scholar
  23. 23.
    Musshoff F, Stamer U, Madea B (2010) Pharmacogenetics and forensic toxicology. Forensic Sci Int 203(1–3):53–62PubMedCrossRefGoogle Scholar
  24. 24.
    Sajantila A, Palo J, Ojanpera I, Davis C, Budowle B (2010) Pharmacogenetics in medico-legal context. For Sci Int 203:44–52Google Scholar
  25. 25.
    Jones AW, Holmgren A, Kugelberg FC (2007) Concentrations of sheduled prescription drugs in blood of impaired drivers: considerations for interpreting the results. Ther Drug Monit 29(2):248–260PubMedCrossRefGoogle Scholar
  26. 26.
    Roche, Diagnostics (2006) AmpliChip CYP450 test. Roche Molecular Systems, Inc., Branchburg, NJ 08876 USAGoogle Scholar
  27. 27.
    Daly A, Brockmöller J, Broly F, Eichelbaum M, Evans W, Gonzalez F, Huang J, Idle J, Ingelman-Sundberg M, Ishizaki T, Jacqz-Aigrain E, Meyer U, Nebert D, Steen V, Wolf C, Zanger U (1996) Nomenclature for human CYP2D6 alleles. Pharmacogenetics 6(3):193–201PubMedCrossRefGoogle Scholar
  28. 28.
    Zackrisson A, Lindblim B, Ahlner J (2010) High frequency of occurrence of CYP2D6 gene duplication/multiduplication indicating ultrarapid metabolism among suicide cases. Clin Pharm Ther 88(3):354–359CrossRefGoogle Scholar
  29. 29.
    Zanger U, Raimundo S, Eichelbaum M (2004) Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 369(1):23–37PubMedCrossRefGoogle Scholar
  30. 30.
    Zhou S (2009) Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet 48(11):689–723PubMedCrossRefGoogle Scholar
  31. 31.
    Agúndez JAG, Ledesma MC, Ladero JM, Benítez J (1995) Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a white population. Clin Pharmacol Ther 57(3):265–269PubMedCrossRefGoogle Scholar
  32. 32.
    Meyer UA (2000) Pharmacogenetics and adverse drug reactions. Lancet 356:1667–1671PubMedCrossRefGoogle Scholar
  33. 33.
    Toscano C, Klein K, Blievernicht J, Schaeffeler E, Saussele T, Raimundo S, Eichelbaum M, Schwab M, Zanger UM (2006) Impaired expression of CYP2D6 in intermediate metabolizers carrying the *41 allele caused by the intronic SNP 2988G>A: evidence for modulation of splicing events. Pharmacogenet Genomics 16:755–766PubMedCrossRefGoogle Scholar
  34. 34.
    Carlsson B, Holmgren A, Ahlner J, Bengtsson F (2009) Enantioselective analysis of citalopram and escitalopram in postmortem blood together with genotyping for CYP2D6 and CYP2C19. J Anal Toxicol 33(2):65–76PubMedGoogle Scholar
  35. 35.
    Ahlner J, Zackrisson A, Lindblom B, Bertilsson L (2010) CYP2D6, serotonin and suicide. Pharmacogenomics 11(7):903–905PubMedCrossRefGoogle Scholar
  36. 36.
    Kronstrand R, Jones AW (2001) Letter to the editor: concentration ratios of codeine-to-morphine in plasma after a single oral dose (100 mg) of codeine phosphate. J Anal Toxicol 25:486–487PubMedGoogle Scholar
  37. 37.
    Quiding H, Anderson P, Bondesson U, Boréus LO, Hynning P-A (1986) Plasma concentrations of codeine and its metabolite. Morphine, after single and repeated oral administration. Eur J Clin Pharmacol 30:673–677PubMedCrossRefGoogle Scholar
  38. 38.
    Shah JC, Mason WD (1990) Plasma codeine and morphine concentrations after a single oral dose of codeine phosphate. J Clin Pharmacol 30:764–766PubMedGoogle Scholar
  39. 39.
    Cone EJ, Welch P, Paul BD, Mitchell JM (1991) Forensic drug testing for opiates. III. Urinary excretion rates of morphine and codeine following codeine administration. J Anal Toxicol 15:161–166PubMedGoogle Scholar
  40. 40.
    He YJ, Brockmöller J, Schmidt H, Roots I, Kirchheiner J (2008) CYP2D6 ultrarapid metabolism and morphine/codeine ratios in blood: was it codeine or heroin? J Anal Toxicol 32:178–182PubMedGoogle Scholar
  41. 41.
    Armstrong SC, Cozza KL (2003) Med-psych drug-drug interactions update—pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, part II. Psychosomatics 44(6):515–520PubMedCrossRefGoogle Scholar
  42. 42.
    Delgoda R, Westlake ACG (2004) Herbal interactions involving cytochrome P450 enzymes. Toxicol Rev 23(4):239–249PubMedCrossRefGoogle Scholar
  43. 43.
    Bomsien S, Skopp G (2007) An in vitro approach to potential methadone metabolic-inhibition interactions. Eur J Clin Pharmacol 63(9):821–827. doi:10.1007/s00228-007-0327-z PubMedCrossRefGoogle Scholar
  44. 44.
    Buchard A, Linnet K, Johansen S, Munkholm J, Fregerslev M, Morling N (2010) Postmortem blood concentrations of R- and S-enantiomers of methadone and EDDP in drug users: influence of co-medication and p-glycoprotein genotype. J Forensic Sci 55(2):457–463, EpubPubMedCrossRefGoogle Scholar
  45. 45.
    Kroon L (2007) Drug interactions with smoking. Am J Health Syst Pharm 64(18):1917–1921PubMedCrossRefGoogle Scholar
  46. 46.
    Skopp G (2010) Artifacts are an inherent part of postmortem toxicology. TIAFT Bulletin 40:7–17Google Scholar
  47. 47.
    Bock K, Schrenk D, Forster A, Griese E, Mörike K, Brockmeier D, Eichelbaum M (1994) The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics 4(4):209–218PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute of Legal Medicine, Forensic ToxicologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Institute of Legal Medicine, Forensic Molecular BiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  3. 3.Department of Clinical ChemistryUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations