Advertisement

International Journal of Legal Medicine

, Volume 126, Issue 3, pp 435–440 | Cite as

Immunohistochemical analysis on cyclooxygenase-2 for wound age determination

  • Yuko Ishida
  • Akihiko Kimura
  • Mizuho Nosaka
  • Yumi Kuninaka
  • Tatsunori Takayasu
  • Wolfgang Eisenmenger
  • Toshikazu Kondo
Original Article

Abstract

Immunohistochemical study combined with morphometry was carried out to examine the expression of cyclooxygenase-2 (COX-2) using 60 human skin wounds of different ages: group I, 0–4 h (n = 11); II, 8 h–2 days (n = 21); III, 3–9 days (n = 14); and IV, 12–21 days (n = 14). In wound specimens aged 2 h to 2 days, anti-myeloperoxidase-positive neutrophils observed at the wound site expressed immunopositive reaction to COX-2. In wound specimens of more than 3 days, CD68-positive macrophages as well as neutrophils were positively immunostained with anti-COX-2. In group II, all 21 wound samples had COX-2-positive ratios of >40 %, and 15 out of them showed >50 %. In group III, only three wound samples with the postinfliction intervals of 3 days showed positive ratios of 40–50 % and the remaining 11 cases less than 40 %. In groups I and IV, all 25 wound specimens had COX-2-positive ratio of <40 %. With regard to the practical applicability with forensic safety, these observations suggested that a COX-2-positive ratio of >40 % indicated a wound age of 8 h to 3 days. Moreover, COX-2-positive ratios, considerably exceeding a ratio of 50 %, indicate a wound age of 8 h to 2 days. Collectively, COX-2 would be a useful marker for the determination of early wound age.

Keywords

Cyclooxygenase-2 Wound age determination Immunohistochemistry Forensic pathology 

Notes

Acknowledgments

This study was financially supported by Grants-in-Aid for Scientific Research (A), Young Scientists (A), and Exploratory Research from the Ministry of Education, Science, Sports and Culture of Japan. We sincerely thank Ms. Mariko Kawaguchi for her excellent assistance in preparing this manuscript.

References

  1. 1.
    Kondo T (2007) Timing of skin wounds. Leg Med (Tokyo) 9:109–114CrossRefGoogle Scholar
  2. 2.
    Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203:93–98PubMedCrossRefGoogle Scholar
  3. 3.
    Cecchi R (2010) Estimating wound age: looking into the future. Int J Legal Med 124:523–536PubMedCrossRefGoogle Scholar
  4. 4.
    Betz P (1994) Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Legal Med 107:60–68PubMedCrossRefGoogle Scholar
  5. 5.
    An JL, Ishida Y, Kimura A, Kondo T (2011) Immunohistochemical examination of intracerebral aquaporin-4 expression and its application for differential diagnosis between freshwater and saltwater drowning. Int J Legal Med 125:59–65PubMedCrossRefGoogle Scholar
  6. 6.
    An JL, Ishida Y, Kimura A, Kondo T (2010) Forensic application of intrarenal aquaporin-2 expression for differential diagnosis between freshwater and saltwater drowning. Int J Legal Med 124:99–104PubMedCrossRefGoogle Scholar
  7. 7.
    Nosaka M, Ishida Y, Kimura A, Kondo T (2010) Immunohistochemical detection of MMP-2 and MMP-9 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med 124:439–444PubMedCrossRefGoogle Scholar
  8. 8.
    Nosaka M, Ishida Y, Kimura A, Kondo T (2009) Time-dependent appearance of intrathrombus neutrophils and macrophages in a stasis-induced deep vein thrombosis model and its application to thrombus age determination. Int J Legal Med 123:235–240PubMedCrossRefGoogle Scholar
  9. 9.
    Fracasso T, Pfeiffer H, Michaud K, Köhler H, Sauerland C, Schmeling A (2011) Immunohistochemical expression of fibronectin and C5b-9 in the myocardium in cases of carbon monoxide poisoning. Int J Legal Med 125:377–384PubMedCrossRefGoogle Scholar
  10. 10.
    Yoshida C, Ishikawa T, Michiue T, Quan L, Maeda H (2011) Postmortem biochemistry and immunohistochemistry of chromogranin A as a stress marker with special regard to fatal hypothermia and hyperthermia. Int J Legal Med 125:11–20PubMedCrossRefGoogle Scholar
  11. 11.
    Bohnert M, Anderson J, Rothschild MA, Böhm J (2010) Immunohistochemical expression of fibronectin in the lungs of fire victims proves intravital reaction in fatal burns. Int J Legal Med 124:583–588PubMedCrossRefGoogle Scholar
  12. 12.
    Dressler J, Hanisch U, Kuhlisch E, Geiger KD (2007) Neuronal and glial apoptosis in human traumatic brain injury. Int J Legal Med 121:365–375PubMedCrossRefGoogle Scholar
  13. 13.
    Kondo T, Tanaka J, Ishida Y, Mori R, Takayasu T, Ohshima T (2002) Ubiquitin expression in skin wounds and its application to forensic wound age determination. Int J Legal Med 116:267–272PubMedCrossRefGoogle Scholar
  14. 14.
    Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2008) Expression of oxygen-regulated protein 150 (ORP150) in skin wound healing and its application for wound age determination. Int J Legal Med 122:409–414PubMedCrossRefGoogle Scholar
  15. 15.
    Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2009) Detection of fibrocytes in human skin wounds and its application for wound age determination. Int J Legal Med 123:299–304PubMedCrossRefGoogle Scholar
  16. 16.
    Kondo T, Ohshima T, Eisenmenger W (1999) Immunohistochemical and morphometrical study on the temporal expression of interleukin-1α (IL-1α) in human skin wounds for forensic wound age determination. Int J Legal Med 112:249–252PubMedCrossRefGoogle Scholar
  17. 17.
    Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2004) Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118:320–325PubMedCrossRefGoogle Scholar
  18. 18.
    Kondo T, Ohshima T, Mori R, Guan DW, Ohshima K, Eisenmenger W (2002) Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination. Int J Legal Med 116:87–91PubMedCrossRefGoogle Scholar
  19. 19.
    Ma WX, Yu TS, Fan YY, Zhang ST, Ren P, Wang SB, Zhao R, Pi JB, Guan DW (2011) Time-dependent expression and distribution of monoacylglycerol lipase during the skin-incised wound healing in mice. Int J Legal Med 125:549–558PubMedCrossRefGoogle Scholar
  20. 20.
    Yu TS, Cheng ZH, Li LQ, Zhao R, Fan YY, Du Y, Ma WX, Guan DW (2010) The cannabinoid receptor type 2 is time-dependently expressed during skeletal muscle wound healing in rats. Int J Legal Med 124:397–404PubMedCrossRefGoogle Scholar
  21. 21.
    Betz P (1995) Immunohistochemical parameters for the age estimation of human skin wounds. A review. Am J Forensic Med Pathol 16:203–209PubMedCrossRefGoogle Scholar
  22. 22.
    Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81PubMedCrossRefGoogle Scholar
  23. 23.
    Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746PubMedCrossRefGoogle Scholar
  24. 24.
    Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69:513–521PubMedGoogle Scholar
  25. 25.
    Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15:599–607PubMedCrossRefGoogle Scholar
  26. 26.
    Ishida Y, Gao JL, Murphy PM (2008) Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J Immunol 180:569–579PubMedGoogle Scholar
  27. 27.
    Ishida Y, Kondo T, Kimura A, Matsushima K, Mukaida N (2006) Absence of IL-1 receptor antagonist impaired wound healing along with aberrant NF-κB activation and a reciprocal suppression of TGF-β signal pathway. J Immunol 176:5598–5606PubMedGoogle Scholar
  28. 28.
    Ishida Y, Kondo T, Takayasu T, Iwakura Y, Mukaida N (2004) The essential involvement of cross-talk between IFN-γ and TGF-β in the skin wound-healing process. J Immunol 172:1848-1855Google Scholar
  29. 29.
    Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N (2003) Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J Leukoc Biol 73:713–721PubMedCrossRefGoogle Scholar
  30. 30.
    Mori R, Kondo T, Ohshima T, Ishida Y, Mukaida N (2002) Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J 16:963–974PubMedCrossRefGoogle Scholar
  31. 31.
    Laulederkind SJ, Thompson-Jaeger S, Goorha S, Chen Q, Fu A, Rho JY, Ballou LR, Raghow R (2002) Both constitutive and inducible prostaglandin H synthase affect dermal wound healing in mice. Lab Invest 82:919–927PubMedGoogle Scholar
  32. 32.
    Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073PubMedGoogle Scholar
  33. 33.
    Warner TD, Mitchell JA (2004) Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic. FASEB J 18:790–804PubMedCrossRefGoogle Scholar
  34. 34.
    Foitzik T, Hotz HG, Hotz B, Wittig F, Buhr HJ (2003) Selective inhibition of cyclooxygenase-2 (COX-2) reduces prostaglandin E2 production and attenuates systemic disease sequelae in experimental pancreatitis. Hepatogastroenterology 50:1159–1162PubMedGoogle Scholar
  35. 35.
    Hayashi T, Ishida Y, Kimura A, Iwakura Y, Mukaida N, Kondo T (2007) IFN-γ protects cerulein-induced acute pancreatitis by repressing NF-κB activation. J Immunol 178:7385–7394PubMedGoogle Scholar
  36. 36.
    King SJ, Werrett DJ, Harrison DT (1989) The evaluation of an ELISA for semen-specific 19-OH prostaglandin F1 alpha/F2 alpha using ex-casework swabs and stains. Forensic Sci Int 42:103–123PubMedCrossRefGoogle Scholar
  37. 37.
    King SJ, Kelly RW, Sutton JG (1989) The development of an enzyme-linked immunosorbent assay for 19-OH PG F1 alpha/F2 alpha. Forensic Sci Int 40:211–216PubMedCrossRefGoogle Scholar
  38. 38.
    King SJ, Sutton JG, Trewsdale LA (1989) Radioimmunoassay detection limits for 19-OH F1 alpha/F2 alpha prostaglandin in normal, infertile and vasectomized semen stains. Analysis of saliva, sweat and urine for possible non-specific or matrix effects. Forensic Sci Int 40:221–229PubMedCrossRefGoogle Scholar
  39. 39.
    King SJ, Sutton JG (1989) A survey of the concentration of 19-OH F1 alpha/F2 alpha prostaglandins in the semen of fertile, infertile and vasectomized men and their stability in both liquid semen and semen stains. Forensic Sci Int 40:217–220PubMedCrossRefGoogle Scholar
  40. 40.
    Sutton JG, King SJ, Taylor M (1987) The application of a simple RIA technique for the detection of 19-OH F1 alpha/F2 alpha prostaglandin, a specific semen marker, in semen contaminated vaginal swabs: time since intercourse studies. Forensic Sci Int 34:143–153PubMedCrossRefGoogle Scholar
  41. 41.
    Sutton JG, Kelly RW, Morris BA (1987) Evaluation of the 190H analogues of prostaglandins E1, E2, F1 alpha and F2 alpha as specific markers for the identification of human semen in body fluid mixtures. Forensic Sci Int 33:103–116PubMedCrossRefGoogle Scholar
  42. 42.
    He L, Zhu J (1996) Distinguishing antemortem from postmortem injuries by LTB4 quantification. Forensic Sci Int 31:11–16CrossRefGoogle Scholar
  43. 43.
    Hernández-Cueto C, Vieira DN, Girela E, Marques E, Calvo MD, Villalobos M, Oliveira de Sà F, Villanueva E (1994) Prostaglandin F2a (PGF2a): an inadequate marker of the vitality of wounds? Int J Legal Med 106:312–314PubMedCrossRefGoogle Scholar
  44. 44.
    Bai R, Wan L, Shi M (2008) The time-dependent expressions of IL-1beta, COX-2, MCP-1 mRNA in skin wounds of rabbits. Forensic Sci Int 175:193–197PubMedCrossRefGoogle Scholar
  45. 45.
    Kondo T, Ohshima T (1996) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med 108:231–236PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yuko Ishida
    • 1
  • Akihiko Kimura
    • 1
  • Mizuho Nosaka
    • 1
  • Yumi Kuninaka
    • 1
  • Tatsunori Takayasu
    • 2
  • Wolfgang Eisenmenger
    • 3
  • Toshikazu Kondo
    • 1
  1. 1.Department of Forensic MedicineWakayama Medical UniversityWakayamaJapan
  2. 2.Department of Forensic and Social Environmental MedicineKanazawa University Graduate School of Medical ScienceKanazawaJapan
  3. 3.Institute of Legal MedicineUniversity of MunichMunichGermany

Personalised recommendations