International Journal of Legal Medicine

, Volume 126, Issue 2, pp 321–326 | Cite as

Age estimation based on a combined arteriosclerotic index

  • Lukas HornyEmail author
  • Tomas Adamek
  • Hynek Chlup
  • Rudolf Zitny
Technical Note


This study introduces a new quantity, the combined arteriosclerotic index (CAI), which is defined as the ratio between the diameter and the longitudinal prestrain of an artery. The longitudinal prestrain has been adopted as the ratio between the in situ length and the excised length of the abdominal aorta, and is a measure of arterial elasticity. During ageing, arteriosclerosis is manifested by the loss of pretension and by enlargement of the diameter of the artery. CAI combines these two effects. A sample of 61 female and 194 male autopsy measurements of human abdominal aortas shows that CAI correlates significantly with chronological age (R = 0.916/0.921; female/male). The sample had the following parameters: age 53 ± 19/48 ± 16 years; diameter of the abdominal aorta 12.4 ± 2.2/13.4 ± 2.1 mm; and longitudinal prestrain 1.13 ± 0.10/1.15 ± 0.10 (mean ± sample standard deviation; female/male). The resulting CAI was 11.2 ± 2.7/11.9 ± 2.6 mm. The classical linear regression model was employed for age estimation by CAI. The model gave a residual standard deviation of 7.6/6.3 years and a 95% prediction interval range of ± 15.4/12.5 years (female/male). A two-sample t-test confirmed that there are significant differences between the female and male population during ageing, reflected by CAI, unlike longitudinal prestrain. It was concluded that CAI is a suitable predictor of age at time of death and is easily obtainable in the autopsy room.


Aorta Ageing Age estimation Arteriosclerosis Prestrain 



This work has been supported by Czech Ministry of Education project MSM 6840770012, by Czech Science Foundation project GA 106/08/0557, and by Czech Technical University project SGS10/247/OHK2/3 T/12.


  1. 1.
    Ferrante L, Cameriere R (2009) Statistical methods to assess the reliability of measurements in the procedures for forensic age estimation. Int J Legal Med 123:277–283. doi: 10.1007/s00414-009-0349-4 PubMedCrossRefGoogle Scholar
  2. 2.
    Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schütz HW, Kaatsch H-J, Borrman HIM (2000) Age estimation: the state of the art in relation to the specific demands of forensic practise. Int J Legal Med 113:129–136. doi: 10.1007/s004140050283 PubMedCrossRefGoogle Scholar
  3. 3.
    Meissner C, Ritz-Timme S (2010) Molecular pathology and age estimation. Forensic Sci Int 203:34–43. doi: 10.1016/j.forsciint.2010.07.010 PubMedCrossRefGoogle Scholar
  4. 4.
    Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193:1–13. doi: 10.1016/j.forsciint.2009.09.008 PubMedCrossRefGoogle Scholar
  5. 5.
    Rissech C, Wilson J, Winburn AP, Turbón D, Steadman D (2011) A comparison of three established age estimation methods on an adult Spanish sample. Int J Legal Med. doi: 10.1007/s00414-011-0586-1, in press
  6. 6.
    Graham JP, O'Donnell CJ, Craig PJG, Walker GL, Hill A, Cirillo GN, Clark RM, Gledhill SR, Schneider-Kolsky ME (2010) The application of computerized tomography (CT) to the dental ageing of children and adolescents. Forensic Sci Int 195:58–62. doi: 10.1016/j.forsciint.2009.11.011 PubMedCrossRefGoogle Scholar
  7. 7.
    Serinelli S, Panetta V, Pasqualetti P, Marchetti D (2011) Accuracy of three age determination X-ray methods on the left hand-wrist: a systematic review and meta-analysis. Legal Med 13:120–133. doi: 10.1016/j.legalmed.2011.01.004 PubMedCrossRefGoogle Scholar
  8. 8.
    Schmeling A, Schulz R, Reisinger W, Mühler M, Wernecke K-D, Geserick G (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118:5–8. doi: 10.1007/s00414-003-0404-5 PubMedCrossRefGoogle Scholar
  9. 9.
    Schmidt S, Baumann U, Schulz R, Reisinger W, Schmeling A (2008) Study of age dependence of epiphyseal ossification of the hand skeleton. Int J Legal Med 122:51–54. doi: 10.1007/s00414-007-0209-z PubMedCrossRefGoogle Scholar
  10. 10.
    Ritz S, Schutz HW, Peper C (1993) Postmortem estimation of age at death based on aspartic acid racemization in dentin: Its applicability for root dentin. Int J Legal Med 105:289–293. doi: 10.1007/BF01370387 PubMedCrossRefGoogle Scholar
  11. 11.
    Ritz-Timme S, Rochholz G, Schütz HW, Collins MJ, Waite ER, Cattaneo C, Kaatsch H-J (2000) Quality assurance in age estimation based on aspartic acid racemisation. Int J Legal Med 114:83–86. doi: 10.1007/s004140000159 PubMedCrossRefGoogle Scholar
  12. 12.
    Griffin RC, Penkman KEH, Moody H, Collins MJ (2010) The impact of random natural variability on aspartic acid racemization ratios in enamel from different types of human teeth. Forensic Sci Int 200:148–152. doi: 10.1016/j.forsciint.2010.04.005 PubMedCrossRefGoogle Scholar
  13. 13.
    Dobberstein RC, Tung S-M, Ritz-Timme S (2010) Aspartic acid racemisation in purified elastin from arteries as basis for age estimation. Int J Legal Med 124:269–275. doi: 10.1007/s00414-009-0392-1 PubMedCrossRefGoogle Scholar
  14. 14.
    Ritz-Timme S, Laumeier I, Collins M (2003) Age estimation based on aspartic acid racemization in elastin from the yellow ligaments. Int J Legal Med 117:96–101. doi: 10.1007/s00414-002-0355-2 PubMedGoogle Scholar
  15. 15.
    Pilin A, Pudil F, Bencko V (2007) Changes in colour of different human tissues as a marker of age. Int J Legal Med 121:158–162. doi: 10.1007/s00414-006-0136-4 PubMedCrossRefGoogle Scholar
  16. 16.
    O’Rourke MF, Hashimoto J (2007) Mechanical factors in arterial aging. J Am Coll Cardiol 50:1–13. doi: 10.1016/j.jacc.2006.12.050 PubMedCrossRefGoogle Scholar
  17. 17.
    O’Rourke MF (2007) Arterial aging: pathophysiological principles. Vasc Med 12:329–341. doi: 10.1177/1358863X07083392 PubMedCrossRefGoogle Scholar
  18. 18.
    McEniery CM, Wilkinson IB, Avolio AP (2007) Age, hypertension and arterial function. Clin Exp Pharmacol Physiol 34:665–671. doi: 10.1111/j.1440-1681.2007.04657.x PubMedCrossRefGoogle Scholar
  19. 19.
    Greenwald SE (2007) Ageing of the conduit arteries. J Pathol 211:157–172. doi: 10.1002/path.2101 PubMedCrossRefGoogle Scholar
  20. 20.
    Atkinson J (2008) Age-related medial elastocalcinosis in arteries: mechanisms, animal models, and physiological consequences. J Appl Physiol 105:1643–1651. doi: 10.1152/japplphysiol.90476.2008 PubMedCrossRefGoogle Scholar
  21. 21.
    Samila ZJ, Carter SA (1981) The effect of age on the unfolding of elastin lamellae and collagen fibers with stretch in human carotid arteries. Can J Physiol Pharmacol 59:1050–1057. doi: 10.1139/y81-160 PubMedCrossRefGoogle Scholar
  22. 22.
    Horny L, Adamek T, Vesely J, Chlup H, Zitny R, Konvickova S (2011) Age-related distribution of longitudinal pre-strain in abdominal aorta with emphasis on forensic application. Forensic Sci Int. doi: 10.1016/j.forsciint.2011.07.007, in press
  23. 23.
    Horny L, Adamek T, Gultova E, Zitny R, Vesely J, Chlup H, Konvickova S (2011) Correlations between age, prestrain, diameter and atherosclerosis in the male abdominal aorta. J Mech Behav Biomed Mater. doi: 10.1016/j.jmbbm.2011.07.011, in press
  24. 24.
    Ryan TP (2007) Modern engineering statistics. Wiley, HobokenCrossRefGoogle Scholar
  25. 25.
    Kumar V, Abbas AK, Fausto N, Aster JC (2010) Robbins and Cotran pathologic basis of disease, 8th edn. Elsevier, PhiladelphiaGoogle Scholar
  26. 26.
    Rösing FW, Kvaal SI (1997) Dental age in adults. A review of estimation methods. In: Alt KW, Rösing FW, Teschler-Nicola M (eds) Dental anthropology. Fundamentals, limits and prospects. Springer, Vienna, pp 443–468Google Scholar
  27. 27.
    Learoyd BM, Taylor MG (1966) Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 18:278–292PubMedGoogle Scholar
  28. 28.
    Schulze-Bauer CAJ, Morth C, Holzapfel GA (2003) Passive biaxial mechanical response of aged human iliac arteries. J Biomech Eng 125:395–406. doi: 10.1115/1.1574331 PubMedCrossRefGoogle Scholar
  29. 29.
    Schulze-Bauer CA, Regitnig P, Holzapfel GA (2002) Mechanics of the human femoral adventitia including the high-pressure response. Am J Physiol Heart Circ Physiol 282:2427–2440. doi: 10.1152/ajpheart.00397.2001 Google Scholar
  30. 30.
    Rachev A, Greenwald SE (2003) Residual strains in conduit arteries. J Biomech 36:661–670. doi: 10.1016/S0021-9290(02)00444-X PubMedCrossRefGoogle Scholar
  31. 31.
    Kassab GS (2006) Biomechanics of the cardiovascular system: the aorta as an illustratory example. J R Soc Interface 3:719–740. doi: 10.1098/rsif.2006.0138 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Lukas Horny
    • 1
    Email author
  • Tomas Adamek
    • 2
  • Hynek Chlup
    • 1
  • Rudolf Zitny
    • 1
  1. 1.Faculty of Mechanical EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Third Faculty of MedicineCharles University in PraguePragueCzech Republic

Personalised recommendations