International Journal of Legal Medicine

, Volume 126, Issue 2, pp 187–198 | Cite as

Postmortem chemistry update part I

  • Cristian Palmiere
  • Patrice Mangin
Review Article


Postmortem chemistry is becoming increasingly essential in the forensic pathology routine and considerable progress has been made over the past years. Biochemical analyses of vitreous humor, cerebrospinal fluid, blood and urine may provide significant information in determining the cause of death or in elucidating forensic cases. Postmortem chemistry may essentially contribute in the determination of the cause of death when the pathophysiological changes involved in the death process cannot be detected by morphological methods (e.g. diabetes mellitus, alcoholic ketoacidosis and electrolytic disorders). It can also provide significant information and useful support in other forensic situations, including anaphylaxis, hypothermia, sepsis and hormonal disturbances. In this article, we present a review of the literature that covers this vast topic and we report the results of our observations. We have focused our attention on glucose metabolism, renal function and electrolytic disorders.


Postmortem chemistry Biochemical markers Glucose metabolism Electrolytes Renal function 



The authors are grateful to the anonymous reviewers, whose constructive and useful comments improved the quality of the article.


  1. 1.
    Coe JI (1993) Postmortem chemistry update. Emphasis on forensic application. Am J Forensic Med Pathol 14(2):91–117PubMedGoogle Scholar
  2. 2.
    Arroyo A, Valero J, Marrón T, Vidal C, Hontecillas B, Bernal J (1998) Pericardial fluid postmortem: comparative study of natural and violent deaths. Am J Forensic Med Pathol 19(3):266–268PubMedGoogle Scholar
  3. 3.
    Madea B, Kreuser C, Banaschak S (2001) Postmortem biochemical examination of synovial fluid—a preliminary study. Forensic Sci Int 118(1):29–35PubMedGoogle Scholar
  4. 4.
    Gagajewski A, Murakami MM, Kloss J, Edstrom M, Hillyer M, Peterson GF, Amatuzio J, Apple FS (2004) Measurement of chemical analytes in vitreous humor: stability and precision studies. J Forensic Sci 49(2):371–374PubMedGoogle Scholar
  5. 5.
    Arroyo A, Rosel P, Marrón T (2005) Cerebrospinal fluid: postmortem biochemical study. J Clin Forensic Med 12(3):153–156PubMedGoogle Scholar
  6. 6.
    Mulla A, Massey KL, Kalra J (2005) Vitreous humor biochemical constituents: evaluation of between-eye differences. Am J Forensic Med Pathol 26(2):146–149PubMedGoogle Scholar
  7. 7.
    Madea B, Musshoff F (2007) Postmortem chemistry. Forensic Sci Int 165(2–3):165–171PubMedGoogle Scholar
  8. 8.
    Uemura K, Shintani-Ishida K, Saka K, Nakajima M, Ikegaya H, Kikuchi Y, Yoshida K (2008) Biochemical blood markers and sampling sites in forensic autopsy. J Forensic Leg Med 15(5):312–317PubMedGoogle Scholar
  9. 9.
    Thierauf A, Musshoff F, Madea B (2009) Postmortem biochemical investigations of vitreous humor. Forensic Sci Int 192(1–3):78–82PubMedGoogle Scholar
  10. 10.
    Luna A (2009) Is postmortem biochemistry really useful? Why is it not widely used in forensic pathology? Leg Med (Tokyo) 11(Suppl 1):S27–S30Google Scholar
  11. 11.
    Maeda H, Zhu BL, Ishikawa T, Quan L, Michiue T (2009) Significance of postmortem biochemistry in determining the cause of death. Leg Med (Tokyo) 11(Suppl 1):S46–S49Google Scholar
  12. 12.
    Hess C, Musshoff F, Madea B (2011) Disorders of glucose metabolism—post mortem analyses in forensic cases: part I. Int J Legal Med 125(2):163–170PubMedGoogle Scholar
  13. 13.
    Musshoff F, Hess C, Madea B (2011) Disorders of glucose metabolism—post mortem analyses in forensic cases—part II. Int J Legal Med 125(2):171–180PubMedGoogle Scholar
  14. 14.
    Maeda H, Ishikawa T, Michiue T (2011) Forensic biochemistry for functional investigation of death: concept and practical application. Leg Med (Tokyo) 13(2):55–67Google Scholar
  15. 15.
    Boulagnon C, Garnotel R, Fornes P, Gillery P (2011) Postmortem biochemistry of vitreous humor and glucose metabolism: an update. Clin Chem Lab Med 49(8):1265–1270PubMedGoogle Scholar
  16. 16.
    Hamilton-Paterson JL, Johnson EWM (1940) Postmortem glycolysis. J Pathol Bacteriol 50:473–482Google Scholar
  17. 17.
    Tonge JI, Wannan JS (1949) The postmortem blood sugar. Med J Aust 1:439–447PubMedGoogle Scholar
  18. 18.
    Naumann HN (1949) Diabetes and uremia diagnosed at autopsy by testing cerebrospinal fluid and urine. Arch Pathol (Chic) 47(1):70–77Google Scholar
  19. 19.
    Naumann HN (1959) Postmortem chemistry of the vitreous body in man. Arch Ophthalmol 62:356–363PubMedGoogle Scholar
  20. 20.
    Fekete JF, Kerenyi NA (1965) Postmortem blood sugar and blood urea nitrogen determinations. Can Med Assoc J 92:970–973PubMedGoogle Scholar
  21. 21.
    Leahy MS, Farber ER (1967) Postmortem chemistry of human vitreous humor. J Forensic Sci 12(2):214–222PubMedGoogle Scholar
  22. 22.
    Coe JI (1969) Postmortem chemistries on human vitreous humor. Am J Clin Pathol 51(6):741–750PubMedGoogle Scholar
  23. 23.
    Coe JI (1972) Use of chemical determinations on vitreous humor in forensic pathology. J Forensic Sci 17(4):541–546PubMedGoogle Scholar
  24. 24.
    Coe JI (1973) Some further thoughts and observations on postmortem chemistries. Forensic Sci Gazette 5:2–6Google Scholar
  25. 25.
    Coe JI (1974) Postmortem chemistry: practical considerations and a review of the literature. J Forensic Sci 19(1):13–32PubMedGoogle Scholar
  26. 26.
    Swift PG, Worthy E, Emery JL (1974) Biochemical state of the vitreous humor of infants at necropsy. Arch Dis Child 49(9):680–685PubMedGoogle Scholar
  27. 27.
    Coe JI (1977) Postmortem chemistry of blood, cerebrospinal fluid, and vitreous humor. In: Tedeschi CG, Eckert WG, Tedeschi LG (eds) Forensic medicine, vol 2. Saunders, Philadelphia, pp 1030–1060Google Scholar
  28. 28.
    Coe JI (1977) Postmortem chemistry of blood, cerebrospinal fluid, and vitreous humor. Leg Med Annu 1976:55–92PubMedGoogle Scholar
  29. 29.
    Daae LN, Teige B, Svaar H (1978) Determination of glucose in human vitreous humor. Various analytical methods give different results. Z Rechsmed 80(4):287–291Google Scholar
  30. 30.
    Traub F (1969) Methode zur Erkennung von tödlichen Zuckerstoffwechselstörungen an der Leiche. Zbl Allg Path 112:390–399PubMedGoogle Scholar
  31. 31.
    Sippel H, Möttönen M (1982) Combined glucose and lactate values in vitreous humor for postmortem diagnosis of diabetes mellitus. Forensic Sci Int 19(3):217–222PubMedGoogle Scholar
  32. 32.
    Kernbach G, Püschel K, Brinkmann B (1986) Biochemical measurements of glucose metabolism in relation to cause of death and postmortem effects. Z Rechtsmed 96(3):199–213PubMedGoogle Scholar
  33. 33.
    Péclet C, Picotte P, Jobin F (1994) The use of vitreous humor levels of glucose, lactic acid and blood levels of acetone to establish antemortem hyperglycemia in diabetics. Forensic Sci Int 65(1):1–6PubMedGoogle Scholar
  34. 34.
    De Letter EA, Piette MH (1998) Can routinely combined analysis of glucose and lactate in vitreous humor be useful in current forensic practice? Am J Forensic Med Pathol 19(4):335–342PubMedGoogle Scholar
  35. 35.
    Brinkmann B, Fechner G, Karger B, DuChesne A (1998) Ketoacidosis and lactic acidosis—frequent causes of death in chronic alcoholics? Int J Legal Med 111(3):115–119PubMedGoogle Scholar
  36. 36.
    Osuna E, García-Víllora A, Pérez-Cárceles MD, Conejero J, Abenza JM, Martínez P, Luna A (2001) Glucose and lactate in vitreous humor compared with the determination of fructosamine for the postmortem diagnosis of diabetes mellitus. Am J Forensic Med Pathol 22(3):244–249PubMedGoogle Scholar
  37. 37.
    Karlovsek MZ (1995) Postmortem diagnosis of diabetes mellitus and diabetic coma: a comparison of HbA1, glucose, lactate and combined glucose and lactate values in vitreous humor and in cerebrospinal fluid. In: Jacob B, Bonte W (Eds), Advances in Forensic Sciences: Forensic Criminalistic 2, Vol. 4, Verlag Dr Köstner, Berlin, 1995, 38–48Google Scholar
  38. 38.
    Karlovsek MZ (2004) Diagnostic values of combined glucose and lactate values in cerebrospinal fluid and vitreous humor—our experiences. Forensic Sci Int 2(146 Suppl):S19–S23Google Scholar
  39. 39.
    Zilg B, Alkass K, Berg S, Druid H (2009) Postmortem identification of hyperglycemia. Forensic Sci Int 185(1–3):89–95PubMedGoogle Scholar
  40. 40.
    Osuna E, García-Víllora A, Pérez-Cárceles M, Conejero J, Maria Abenza J, Martínez P, Luna A (1999) Vitreous humor fructosamine concentrations in the autopsy diagnosis of diabetes mellitus. Int J Legal Med 112(5):275–279PubMedGoogle Scholar
  41. 41.
    Vivero G, Vivero-Salmerón G, Pérez Cárceles MD, Bedate A, Luna A, Osuna E (2008) Combined determination of glucose and fructosamine in vitreous humor as a postmortem tool to identify antemortem hyperglycemia. Rev Diabet Stud 5(4):220–224PubMedGoogle Scholar
  42. 42.
    Goullé JP, Lacroix C, Bouige D (2002) Gylcated haemoglobin: a useful postmortem reference marker in determining diabetes. Forensic Sci Int 128(1–2):44–49PubMedGoogle Scholar
  43. 43.
    Mitchell GA, Kassovska-Bratinova S, Boukaftane Y, Robert MF, Wang SP, Ashmarina L, Lambert M, Lapierre P, Potier E (1995) Medical aspects of ketone body metabolism. Clin Invest Med 18(3):193–216PubMedGoogle Scholar
  44. 44.
    Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15(6):412–426PubMedGoogle Scholar
  45. 45.
    Laffel L (2000) Sick-day management in type 1 diabetes. Endocrinol Metab Clin North Am 29(4):707–723PubMedGoogle Scholar
  46. 46.
    Pounder DJ, Stevenson RJ, Taylor KK (1998) Alcoholic ketoacidosis at autopsy. J Forensic Sci 43:812–816PubMedGoogle Scholar
  47. 47.
    Osuna E, Vivero G, Conejero J, Abenza JM, Martínez P, Luna A, Pérez-Cárceles MD (2005) Postmortem vitreous humor beta-hydroxybutyrate: its utility for the postmortem interpretation of diabetes mellitus. Forensic Sci Int 153(2–3):189–195PubMedGoogle Scholar
  48. 48.
    Kanetake J, Kanawaku Y, Mimasaka S, Sakai J, Hashiyada M, Nata M, Funayama M (2005) The relationship of a high level of serum beta-hydroxybutyrate to cause of death. Leg Med (Tokyo) 7(3):169–174Google Scholar
  49. 49.
    Felby S, Nielsen E, Thomsen JL (2008) The postmortem distribution of ketone bodies between blood, vitreous humor, spinal fluid and urine. Forensic Sci Med Pathol 4(2):100–107PubMedGoogle Scholar
  50. 50.
    Bailey DN (1990) Detection of isopropanol in acetonemic patients not exposed to isopropanol. J Toxicol Clin Toxicol 28(4):459–466PubMedGoogle Scholar
  51. 51.
    Davis PL, Dal Cortivo LA, Maturo J (1984) Endogenous isopropanol: forensic and biochemical implications. J Anal Toxicol 8(5):209–212PubMedGoogle Scholar
  52. 52.
    Teresiński G, Buszewicz G, Madro R (2009) Acetonaemia as an initial criterion of evaluation of a probable cause of sudden death. Leg Med (Tokyo) 11(1):18–24Google Scholar
  53. 53.
    Jones AE, Summers RL (2000) Detection of isopropyl alcohol in a patient with diabetic ketoacidosis. J Emerg Med 19(2):165–168PubMedGoogle Scholar
  54. 54.
    Jenkins AJ, Merrick TC, Oblock JM (2008) Evaluation of isopropanol concentrations in the presence of acetone in postmortem biological fluids. J Anal Toxicol 32(8):719–720PubMedGoogle Scholar
  55. 55.
    Molina DK (2010) A characterization of sources of isopropanol detected on postmortem toxicologic analyses. J Forensic Sci 55(4):998–1002PubMedGoogle Scholar
  56. 56.
    Duffens K, Marx JA (1987) Alcoholic ketoacidosis—a review. J Emerg Med 5(5):399–406PubMedGoogle Scholar
  57. 57.
    Wrenn KD, Slovis CM, Minion GE, Rutkowski R (1991) The syndrome of alcoholic ketoacidosis. Am J Med 91(2):119–128PubMedGoogle Scholar
  58. 58.
    Adams SL (1990) Alcoholic ketoacidosis. Emerg Med Clin North Am 8(4):749–760PubMedGoogle Scholar
  59. 59.
    Caspar CB, Risti B, Iten PX, Jost R, Russi EW, Speich (1993) Alcoholic ketoacidosis. Schweiz Med Wochenschr 123(41):1929–1934PubMedGoogle Scholar
  60. 60.
    Hooper RJ (1994) Alcoholic ketoacidosis: the late presentation of acidosis in an alcoholic. Ann Clin Biochem 31(Pt 6):579–582PubMedGoogle Scholar
  61. 61.
    Sibaï K, Eggimann P (2005) Alcoholic ketoacidosis: not rare cause of metabolic acidosis. Rev Med Suisse 1(32):2106, 2108–10, 2112–5.Google Scholar
  62. 62.
    McGuire LC, Cruickshank AM, Munro PT (2005) Alcoholic ketoacidosis. Emerg Med J 23(6):417–420Google Scholar
  63. 63.
    Denmark LN (1993) The investigation of beta-hydroxybutyrate as a marker for sudden death due to hypoglycemia in alcoholics. Forensic Sci Int 62(3):225–232PubMedGoogle Scholar
  64. 64.
    Thomsen JL, Felby S, Theilade P, Nielsen E (1995) Alcoholic ketoacidosis as a cause of death in forensic cases. Forensic Sci Int 75(2–3):163–171PubMedGoogle Scholar
  65. 65.
    Iten PX, Meier M (2000) Beta-hydroxybutyric acid—an indicator for an alcoholic ketoacidosis as cause of death in deceased alcohol abusers. J Forensic Sci 45(3):624–632PubMedGoogle Scholar
  66. 66.
    Elliott S, Smith C, Cassidy D (2010) The postmortem relationship between beta-hydroxybutyrate (BHB), acetone and ethanol in ketoacidosis. Forensic Sci Int 198(1):53–57PubMedGoogle Scholar
  67. 67.
    Teresiński G, Buszewicz G, Madro R (2005) Biochemical background of ethanol-induced cold susceptibility. Leg Med (Tokyo) 7(1):15–23Google Scholar
  68. 68.
    Teresiński G, Buszewicz G, Madro R (2002) The influence of ethanol on the level of ketone bodies in hypothermia. Forensic Sci Int 127(1–2):88–96PubMedGoogle Scholar
  69. 69.
    Winston DC (2000) Suicide via insulin overdose in nondiabetics: the New Mexico experience. Am J Forensic Med Pathol 21(3):237–240PubMedGoogle Scholar
  70. 70.
    Finkbeiner WE, Ursell PC, Davis RL (2004) Autopsy pathology. A manual and atlas. Churchill Livingstone, PhiladelphiaGoogle Scholar
  71. 71.
    Niswender KD (2011) Basal insulin: physiology, pharmacology, and clinical implication. Postgrad Med 123(4):17–26PubMedGoogle Scholar
  72. 72.
    Niswender KD (2011) Basal insulin: beyond glycemia. Postgrad Med 123(4):27–37PubMedGoogle Scholar
  73. 73.
    Sturner WQ, Putnam RS (1972) Suicidal insulin poisoning with nine day survival: recovery in bile at autopsy by radioimmunoassay. J Forensic Sci 17(4):514–521PubMedGoogle Scholar
  74. 74.
    Lindquist O, Rammer L (1975) Insulin in postmortem blood. Z Rechtsmed 75(4):275–277PubMedGoogle Scholar
  75. 75.
    Bauman WA, Yalow RS (1981) Insulin as a lethal weapon. J Forensic Sci 26(3):594–598PubMedGoogle Scholar
  76. 76.
    Campbell IW, Ratcliffe JG (1982) Suicidal insulin overdose managed by excision of insulin injection site. Br Med J (Clin Res Ed) 285(6339):408–409Google Scholar
  77. 77.
    Hood I, Mirchandani H, Monforte J, Stacer W (1986) Immunohistochemical demonstration of homicidal insulin injection site. Arch Pathol Lab Med 110(10):973–974PubMedGoogle Scholar
  78. 78.
    Haibach H, Dix JD, Shah JH (1987) Homicide by insulin administration. J Forensic Sci 32(1):208–216PubMedGoogle Scholar
  79. 79.
    Patel F (1992) Fatal self-induced hyperinsulinemia: a delayed postmortem analytical detection. Med Sci Law 32:151–159PubMedGoogle Scholar
  80. 80.
    Beastall GH, Gibson IH, Martin J (1995) Successful suicide by insulin injection in a non-diabetic. Med Sci Law 35(1):79–85PubMedGoogle Scholar
  81. 81.
    Patel F (1995) Successful suicide by insulin injection in a non-diabetic. Med Sci Law 35(2):181–182PubMedGoogle Scholar
  82. 82.
    Kernbach-Wighton G, Püschel K (1998) On the phenomenology of lethal applications of insulin. Forensic Sci Int 93(1):61–73PubMedGoogle Scholar
  83. 83.
    Wehner F, Mittmeyer HJ, Wehner HD, Schieffer MC (1998) Insulin or morphine injection? Immunohistochemical contribution to the elucidation of a case. Forensic Sci Int 95(3):241–246PubMedGoogle Scholar
  84. 84.
    Marks V, Teale JD (1999) Hypoglycemia: factitious and felonious. Endocrinol Metab Clin North Am 28(3):579–601PubMedGoogle Scholar
  85. 85.
    Marks V (1999) Murder by insulin. Med Leg J 67(Pt 4):147–163PubMedGoogle Scholar
  86. 86.
    Marks V (2009) Murder by insulin: suspected, purported and proven. A review. Drug Test Anal 1(4):162–176PubMedGoogle Scholar
  87. 87.
    Banaschak S, Bajanowski T, Brinkmann B (2000) Suicide of a diabetic by inducing hyperglycemic coma. Int J Legal Med 113(3):162–163PubMedGoogle Scholar
  88. 88.
    Iwase H, Kobayashi M, Nakajima M, Takatori T (2001) The ratio of insulin to C-peptide can be used to make a forensic diagnosis of exogenous insulin overdosage. Forensic Sci Int 115(1–2):123–127PubMedGoogle Scholar
  89. 89.
    Batalis NI, Prahlow JA (2004) Accidental insulin overdose. J Forensic Sci 49(5):1117–1120PubMedGoogle Scholar
  90. 90.
    Nikolić S, Atanasijević T, Popović V (2006) A suicide by insulin injection—case report. Srp Arh Celok Lek 134(9–10):444–447PubMedGoogle Scholar
  91. 91.
    Rao NG, Menezes RG, Nagesh KR, Kamath GS (2006) Suicide by combined insulin and glipizide overdose in a non-insulin dependent diabetes mellitus physician: a case report. Med Sci Law 46(3):263–269PubMedGoogle Scholar
  92. 92.
    More DS, Arroyo MC (1985) Biochemical changes of the synovial fluid with regard to the cause of death. 1: Calcium, inorganic phosphorus, glucose, urea nitrogen, uric acid, proteins, and albumin. J Forensic Sci 30(2):541–546PubMedGoogle Scholar
  93. 93.
    Zhu BL, Ishida K, Quan L, Taniguchi M, Oritani S, Li DR, Fujita MQ, Maeda H (2002) Postmortem serum uric acid and creatinine levels in relation to the causes of death. Forensic Sci Int 125(1):59–66PubMedGoogle Scholar
  94. 94.
    Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Quan L, Maeda H (2005) Evaluation of postmortem urea nitrogen, creatinine and uric acid levels in pericardial fluid in forensic autopsy. Leg Med (Tokyo) 7(5):287–292Google Scholar
  95. 95.
    Zhu BL, Ishikawa T, Michiue T, Tanaka S, Zhao D, Li DR, Quan L, Oritani S, Maeda H (2007) Differences in postmortem urea nitrogen, creatinine and uric acid levels between blood and pericardial fluid in acute death. Leg Med (Tokyo) 9(3):115–122Google Scholar
  96. 96.
    Maeda H, Zhu BL, Bessho Y, Ishikawa T, Quan L, Michiue T, Zhao D, Li DR, Komatsu A (2008) Postmortem serum nitrogen compounds and C-reactive protein levels with special regard to investigation of fatal hyperthermia. Forensic Sci Med Pathol 4(3):175–180PubMedGoogle Scholar
  97. 97.
    Byramji A, Cains G, Gilbert JD, Byard RW (2008) Hyponatremia at autopsy: an analysis of etiologic mechanisms and their possible significance. Forensic Sci Med Pathol 4(3):149–152PubMedGoogle Scholar
  98. 98.
    Ingham AI, Byard RW (2009) The potential significance of elevated vitreous sodium levels at autopsy. J Forensic Leg Med 16(8):437–440PubMedGoogle Scholar
  99. 99.
    DiMaio VJ, DiMaio D (2001) Forensic pathology. 2nd EdGoogle Scholar
  100. 100.
    Whitehead FJ, Couper RT, Moore L, Bourne AJ, Byard RW (1996) Dehydration deaths in infants and young children. Am J Forensic Med Pathol 17(1):73–78PubMedGoogle Scholar
  101. 101.
    Ross MP, Spiller HA (1999) Fatal ingestion of sodium hypochlorite bleach with associated hypernatremia and hyperchloremic metabolic acidosis. Vet Hum Toxicol 41(2):82–86PubMedGoogle Scholar
  102. 102.
    Byard RW (2002) Incapacitation or death of a socially isolated parent or carer could result in the death of dependent children. J Paediatr Child Health 38(4):417–418PubMedGoogle Scholar
  103. 103.
    Madea B, Lachenmeier DW (2005) Postmortem diagnosis of hypertonic dehydration. Forensic Sci Int 155(1):1–6PubMedGoogle Scholar
  104. 104.
    Chen X, Huang G (1995) Autopsy case report of a rare acute iatrogenic water intoxication with a review of the literature. Forensic Sci Int 76(1):27–34PubMedGoogle Scholar
  105. 105.
    Arieff AI, Kronlund BA (1999) Fatal child abuse by forced water intoxication. Pediatrics 103(6 Pt 1):1292–1295PubMedGoogle Scholar
  106. 106.
    Garigan TP, Ristedt DE (1999) Death from hyponatremia as a result of acute water intoxication in an Army basic trainee. Mil Med 164(3):234–238PubMedGoogle Scholar
  107. 107.
    Gardner JW (2002) Death by water intoxication. Mil Med 167(5):432–434PubMedGoogle Scholar
  108. 108.
    Gutmann FD, Gardner JW (2002) Fatal water intoxication of an Army trainee during urine drug testing. 167(5):435–437Google Scholar
  109. 109.
    Farrell DJ, Bower L (2003) Fatal water intoxication. J Clin Pathol 56(10):803–804PubMedGoogle Scholar
  110. 110.
    Hayashi T, Ishida Y, Miyashita T, Kiyokawa H, Kimura A, Kondo T (2005) Fatal water intoxication in a schizophrenic patient—an autopsy case. J Clin Forensic Med 12(3):157–159PubMedGoogle Scholar
  111. 111.
    Kalantar-Zadeh K, Nguyen MK, Chang R, Kurtz I (2006) Fatal hyponatremia in a young woman after ecstasy ingestion. Nat Clin Pract Nephrol 2(5):283–288PubMedGoogle Scholar
  112. 112.
    Vucicevic Z, Degoricija V, Alfirevic Z, Vukicevic-Badouin D (2007) Fatal hyponatremia and other metabolic disturbances associated with psychotropic drug polypharmacy. Int J Clin Pharmacol Ther 45(5):289–292PubMedGoogle Scholar
  113. 113.
    Musham CK, Jarathi A, Pedraza G (2010) A rare case of fatal hyponatremia due to a combination of psychotropic polypharmacy and hypothyroidism. Prim Care Companion J Clin Psychiatry 12(4)Google Scholar
  114. 114.
    Zhu BL, Ishikawa T, Quan L, Li DR, Zhao D, Michiue T, Maeda H (2005) Evaluation of postmortem serum calcium and magnesium levels in relation to the causes of death in forensic autopsy. Forensic Sci Int 155(1):18–23PubMedGoogle Scholar
  115. 115.
    Li DR, Quan L, Zhu BL, Ishikawa T, Michiue T, Zhao D, Yoshida C, Chen JH, Wang Q, Komatsu A, Azuma Y, Maeda H (2009) Evaluation of postmortem calcium and magnesium levels in the pericardial fluid with regard to the cause of death in medicolegal autopsy. Forensic Sci Int 11(Suppl 1):S276–S278Google Scholar
  116. 116.
    Azparren JE, de la Rosa I, Sancho M (1994) Biventricular measurement of blood strontium in real cases of drowning. Forensic Sci Int 69(2):139–148PubMedGoogle Scholar
  117. 117.
    Azparren JE, Vallejo G, Reyes E, Herranz A, Sancho M (1998) Study of the diagnostic value of strontium, chloride, haemoglobin and diatoms in immersion cases. Forensic Sci Int 91(2):123–132PubMedGoogle Scholar
  118. 118.
    Azparren JE, Ortega A, Bueno H, Andreu M (2000) Blood strontium concentration related to the length of the agonal period in seawater drowning cases. Forensic Sci Int 108(1):51–60PubMedGoogle Scholar
  119. 119.
    Azparren JE, Fernandez-Rodriguez A, Vallejo G (2003) Diagnosing death by drowning in fresh water using blood strontium as an indicator. Forensic Sci Int 137(1):55–59PubMedGoogle Scholar
  120. 120.
    Azparren JE, Cubero C, Perucha E, Martínez P, Vallejo G (2007) Comparison between lung weight and blood strontium in bodies found in seawater. Forensic Sci Int 168(2):128–132PubMedGoogle Scholar
  121. 121.
    Azparren JE, Perucha E, Martínez P, Muñoz R, Vallejo G (2007) Factors affecting strontium absorption in drawings. Forensic Sci Int 168(2–3):138–142PubMedGoogle Scholar
  122. 122.
    Pérez-Cárceles MD, Sibón A, Gil del Castillo ML, Vizcaya MA, Osuna E, Casas T, Romero JL, Luna A (2008) Strontium levels in different causes of death: diagnostic efficacy in drowning. Biol Trace Elem Res 126(1–3):27–37PubMedGoogle Scholar
  123. 123.
    Papadodima SA, Athanaselis SA, Skliros E, Spiliopoulou CA (2009) Forensic investigation of submersion deaths. Int J Clin Pract 64(1):75–83PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.University Centre of Legal Medicine, Lausanne-GenevaLausanneSwitzerland

Personalised recommendations