International Journal of Legal Medicine

, Volume 126, Issue 2, pp 199–215 | Cite as

Postmortem chemistry update part II

Review Article

Abstract

As a continuation of “Postmortem Chemistry Update Part I,” Part II deals with molecules linked to liver and cardiac functions, alcohol intake and alcohol misuse, myocardial ischemia, inflammation, sepsis, anaphylaxis, and hormonal disturbances. A very important array of new material concerning these situations had appeared in the forensic literature over the last two decades. Some molecules, such as procalcitonin and C-reactive protein, are currently researched in cases of suspected sepsis and inflammation, whereas many other analytes are not integrated into routine casework. As in part I, a literature review concerning a large panel of molecules of forensic interest is presented, as well as the results of our own observations, where possible.

Keywords

Postmortem chemistry Liver function Cardiac function Sepsis Inflammation Anaphylaxis 

References

  1. 1.
    Kumar V (2009) Robbins and Cotran: pathologic basis of disease, 8th edn. Saunders, PhiladelphiaGoogle Scholar
  2. 2.
    Finkbeiner WE, Ursell PC, Davis RL (2004) Autopsy pathology. A manual and atlas. Churchill Livingstone, PhiladelphiaGoogle Scholar
  3. 3.
    Coe JI (1993) Postmortem chemistry update. Emphasis on forensic application. Am J Forensic Med Pathol 14(2):91–117PubMedCrossRefGoogle Scholar
  4. 4.
    Särkioja T, Ylä-Herttuala S, Solakivi T, Nikkari T, Hirvonen J (1988) Stability of plasma total cholesterol, triglycerides and apolipoproteins B and A-1 during the early postmortem period. J Forensic Sci 33(6):1432–1438PubMedGoogle Scholar
  5. 5.
    Uemura K, Shintani-Ishida K, Saka K, Nakajima M, Ikegaya H, Kikuchi Y, Yoshida K (2008) Biochemical blood markers and sampling sites in forensic autopsy. J Forensic Leg Med 15(5):312–317PubMedCrossRefGoogle Scholar
  6. 6.
    Piette M, De Schrijver G (1987) Gamma-glutamyl transferase: applications in forensic pathology. I: study of blood serum recovered from human bodies. Med Sci Law 27(3):152–160PubMedGoogle Scholar
  7. 7.
    Sadler DW, Girela E, Pounder DJ (1996) Post mortem markers of chronic alcoholism. Forensic Sci Int 82(2):153–163PubMedCrossRefGoogle Scholar
  8. 8.
    Arndt T (2001) Carbohydrate-deficient transferrin as a marker of chronic alcohol abuse: a critical review of preanalysis, analysis and interpretation. Clin Chem 47(1):13–27PubMedGoogle Scholar
  9. 9.
    Bortolotti F, De Paoli G, Tagliaro F (2006) Carbohydrate-deficient transferrin (CDT) as a marker of alcohol abuse: a critical review of the literature 2001–2005. J Chromatogr B Analyt Technol Biomed Life Sci 841(1–2):96–109PubMedGoogle Scholar
  10. 10.
    Rainio J, De Giorgio F, Bortolotti F, Tagliaro F (2008) Objective post-mortem diagnosis of chronic alcohol abuse—a review of studies on new markers. Leg Med (Tokyo) 10(5):229–235CrossRefGoogle Scholar
  11. 11.
    Delanghe JR, De Buyzere ML (2009) Carbohydrate deficient transferrin and forensic medicine. Clin Chim Acta 406(1–2):1–7PubMedCrossRefGoogle Scholar
  12. 12.
    Simonnet C, Dumestre-Toulet V, Kintz P, Gromb S (1999) Review of factors susceptible of influencing postmortem carbohydrate-deficient transferrin. Forensic Sci Int 106(1):7–17PubMedCrossRefGoogle Scholar
  13. 13.
    Malcolm R, Anton RF, Conrad SE, Sutherland S (1999) Carbohydrate-deficient transferrin and alcohol use in medical examiner cases. Alcohol 17(1):7–11PubMedCrossRefGoogle Scholar
  14. 14.
    Osuna E, Pérez-Cárceles MD, Moreno M, Bedate A, Conejero J, Abenza JM, Martínez P, Luna A (2000) Vitreous humor carbohydrate-deficient transferrin concentrations in the postmortem diagnosis of alcoholism. Forensic Sci Int 108(3):205–213PubMedCrossRefGoogle Scholar
  15. 15.
    Berkowicz A, Wallerstedt S, Wall K, Denison H (2001) Carbohydrate-deficient transferrin in vitreous humor: a marker of possible withdrawal-related death in alcoholics. Alcohol Alcohol 36(3):231–234PubMedGoogle Scholar
  16. 16.
    Berkowicz A, Wallerstedt S, Wall K, Denison H (2003) Analysis of carbohydrate-deficient transferrin (CDT) in vitreous humor as a forensic tool for detection of alcohol misuse. Forensic Sci Int 137(2–3):119–124PubMedCrossRefGoogle Scholar
  17. 17.
    Rainio J, De Paoli G, Druid H, Kauppila R, De Giorgio F, Bortolotti F, Tagliaro F (2008) Postmortem stability and redistribution of carbohydrate-deficient transferrin (CDT). Forensic Sci Int 174(2–3):161–165PubMedCrossRefGoogle Scholar
  18. 18.
    Schmitt G, Droenner P, Skopp G, Aderjan R (1997) Ethyl glucuronide concentration in serum of human volunteers, teetotalers, and suspected drinking drivers. J Forensic Sci 42(6):1099–1102PubMedGoogle Scholar
  19. 19.
    Wurst FM, Kempter C, Seidl S, Alt A (1999) Ethyl glucuronide: a marker of alcohol consumption and a relapse marker with clinical and forensic implications. Alcohol Alcohol 34(1):71–77PubMedGoogle Scholar
  20. 20.
    Wurst FM, Schüttler R, Kempter C, Seidl S, Gilg T, Jachau K, Alt A (1999) Can ethyl glucuronide be determined in post-mortem body fluids and tissues? Alcohol Alcohol 34(2):262–263PubMedGoogle Scholar
  21. 21.
    Wurst FM, Kempter C, Metzger J, Seidel S, Alt A (2000) Ethyl glucuronide: a marker of recent alcohol consumption with clinical and forensic implications. Alcohol 20(2):111–116PubMedCrossRefGoogle Scholar
  22. 22.
    Alt A, Janda I, Seidl S, Wurst FM (2000) Determination of ethyl glucuronide in hair samples. Alcohol Alcohol 35(3):313–314PubMedGoogle Scholar
  23. 23.
    Skopp G, Schmitt G, Pötsch L, Drönner P, Aderjan R, Mattern R (2000) Ethyl glucuronide in human hair. Alcohol Alcohol 35(3):283–285PubMedGoogle Scholar
  24. 24.
    Seidel S, Wurst FM, Alt A (2001) Ethyl glucuronide—a biological marker for recent alcohol consumption. Addict Biol 6(3):205–212CrossRefGoogle Scholar
  25. 25.
    Yegles M, Labarthe A, Auwärter V, Hartwig S, Vater R, Wennig R, Pragst F (2004) Comparison of ethyl glucuronide and fatty acid ethyl ester concentrations in hair of alcoholics, social drinkers and teetotallers. Forensic Sci Int 145(2–3):167–173PubMedCrossRefGoogle Scholar
  26. 26.
    Jurado C, Soriano T, Giménez MP, Menédez M (2004) Diagnosis of chronic alcohol consumption. Hair analysis for ethyl-glucuronide. Forensic Sci Int 145(2–3):161–166PubMedCrossRefGoogle Scholar
  27. 27.
    Schloegl H, Dresen S, Spaczynski K, Stoertzel M, Wurst FM, Weinmann W (2006) Stability of ethyl glucuronide in urine, post-mortem tissue and blood samples. Int J Legal Med 120(2):83–88PubMedCrossRefGoogle Scholar
  28. 28.
    Schloegl H, Rost T, Schmidt W, Wurst FM, Weinmann W (2006) Distribution of ethyl glucuronide in rib bone marrow, other tissues and body liquids as proof of alcohol consumption before death. Forensic Sci Int 156(2–3):213–218PubMedCrossRefGoogle Scholar
  29. 29.
    Politi L, Zucchella A, Morini L, Stranesi C, Polettini A (2006) Markers of chronic alcohol use in hair: comparison of ethyl glucuronide and cocaethylene in cocaine users. Forensic Sci Int 172(1):23–27PubMedCrossRefGoogle Scholar
  30. 30.
    Politi L, Morini L, Leone F, Polettini A (2006) Ethyl glucuronide in hair: is it a reliable marker of chronic high levels of alcohol consumption? Addiction 101(10):1408–1412PubMedCrossRefGoogle Scholar
  31. 31.
    Høiseth G, Karinen R, Christophersen AS, Olsen L, Normann PT, Mørland J (2007) A study of ethyl glucuronide in post-mortem blood as a marker of ante-mortem ingestion of alcohol. Forensic Sci Int 165(1):41–45PubMedCrossRefGoogle Scholar
  32. 32.
    Høiseth G, Karinen R, Johnsen L, Normann PT, Christophersen AS, Mørland J (2008) Disappearance of ethyl glucuronide during heavy putrefaction. Forensic Sci Int 176(2–3):147–151PubMedCrossRefGoogle Scholar
  33. 33.
    Kharbouche H, Sporkert F, Staub C, Mangin P, Augsburger M (2009) Ethyl glucuronide: a biomarker of alcohol consumption. Praxis 98(22):1299–1306 (Bern 1994)PubMedCrossRefGoogle Scholar
  34. 34.
    Morini L, Politi L, Acito S, Groppi A, Polettini A (2009) Comparison of ethyl glucuronide in hair with carbohydrate-deficient transferrin in serum as markers of chronic high levels of alcohol consumption. Forensic Sci Int 188(1–3):140–143PubMedCrossRefGoogle Scholar
  35. 35.
    Morini L, Politi L, Polettini A (2009) Ethyl glucuronide in hair. A sensitive and specific marker of chronic heavy drinking. Addiction 104(6):915–920PubMedCrossRefGoogle Scholar
  36. 36.
    Pragst F, Rothe M, Moench B, Hastedt M, Herre S, Simmert D (2010) Combined use of fatty acid ethyl esters and ethyl glucuronide in hair for diagnosis of alcohol abuse: interpretation and advantages. Forensic Sci Int 196(1–3):101–110PubMedCrossRefGoogle Scholar
  37. 37.
    Liniger B, Nguyen A, Friedrich-Koch A, Yegles M (2010) Abstinence monitoring of suspected drinking drivers: ethyl glucuronide in hair versus CDT. Traffic Inj Prev 11(2):123–126PubMedCrossRefGoogle Scholar
  38. 38.
    Høiseth G, Karinen R, Christophersen AS, Mørland J (2010) Practical use of ethyl glucuronide and ethyl sulfate in postmortem cases as markers of antemortem alcohol ingestion. Int J Legal Med 124(2):143–148PubMedCrossRefGoogle Scholar
  39. 39.
    Kronstrand R, Brinkhagen L, Nyström FH (2011) Ethyl glucuronide in human hair after daily consumption of 16 or 32 g of ethanol for 3 months. Forensic Sci Int. doi:10.1016/j.forsciint.2011.01.044
  40. 40.
    Dahl H, Voltaire Carlsson A, Hillgren K, Helander A (2011) Urinary ethyl glucuronide and ethyl sulfate testing for detection of recent drinking in an outpatient treatment program for alcohol and drug dependence. Alcohol Alcohol 46(3):278–282PubMedGoogle Scholar
  41. 41.
    Helander A, Olsson I, Dahl H (2007) Postcollection synthesis of ethyl glucuronide by bacteria in urine may cause false identification of alcohol consumption. Clin Chem 53(10):1855–1857PubMedCrossRefGoogle Scholar
  42. 42.
    Wurst FM, Dresen S, Allen JP, Wiesbeck G, Graf M, Weinmann W (2006) Ethyl sulphate: a direct ethanol metabolite reflecting recent alcohol consumption. Addiction 101(2):204–211PubMedCrossRefGoogle Scholar
  43. 43.
    Baranowski S, Serr A, Thierauf A, Weinmann W, Grosse Perdekamp M, Wurst FM, Halter CC (2008) In vitro study of bacterial degradation of ethyl glucuronide and ethyl sulfate. Int J Legal Med 122(5):389–393PubMedCrossRefGoogle Scholar
  44. 44.
    Halter CC, Laengin A, Al-Ahmad A, Wurst FM, Weinmann W, Kuemmerer K (2009) Assessment of the stability of the ethanol metabolite athyl sulfate in standardized degradation tests. Forensic Sci Int 186(1–3):52–55PubMedCrossRefGoogle Scholar
  45. 45.
    Thierauf A, Serr A, Halter CC, Al-Ahmad A, Rana S, Weinmann W (2008) Influence of preservatives on the stability of ethyl glucuronide and ethyl sulphate in urine. Forensic Sci Int 182(1–2):41–45PubMedCrossRefGoogle Scholar
  46. 46.
    Thierauf A, Kempf J, Grosse Perdekamp M, Auwärter V, Gnann H, Wohlfarth A, Weinmann W (2011) Ethyl sulphate and ethyl glucuronide in vitreous humor as postmortem evidence marker for ethanol consumption prior to death. Forensic Sci Int 210(1–3):63–68PubMedCrossRefGoogle Scholar
  47. 47.
    Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H, Kambahashi Y, Inouye K, Imura H (1991) Brain natriuretic peptide as a novel cardiac hormone in humans—evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 87:1402–1412PubMedCrossRefGoogle Scholar
  48. 48.
    Dagnino L, Drouin J, Nemer M (1991) Differential expression of natriuretic peptide genes in cardiac and extracardiac tissues. Mol Endocrinol 5:1292–1300PubMedCrossRefGoogle Scholar
  49. 49.
    Takahashi T, Allen PD, Izumo S (1992) Expression of A-, B- and C-type natriuretic peptide genes in failing and developing human ventricles—correlation with expression of the Ca(2+)-ATPase gene. Circ Res 71:9–17PubMedGoogle Scholar
  50. 50.
    Morita E, Yasue H, Yoshimura M, Ogawa H, Jougasaki M, Matsumura T, Mukoyama M, Nakao K (1993) Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation 88:82–91PubMedGoogle Scholar
  51. 51.
    Hill NS, Klinger JR, Warbuton RR, Pietras L, Wrenn DS (1994) Brain natriuretic peptide: possible role in the modulation of hypoxic pulmonary hypertension. Am J Physiol 266:308–315Google Scholar
  52. 52.
    Yandle TG (1994) Biochemistry of natriuretic peptides. J Intern Med 235(6):561–576PubMedCrossRefGoogle Scholar
  53. 53.
    Ogawa Y, Nakao K (1995) Brain natriuretic peptide as a cardiac hormone in cardiovascular disorders. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis and management, vol 1. Raven, New York, pp 833–840Google Scholar
  54. 54.
    Hama N, Itoh H, Shirakami G, Nakagawa O, Suga S, Ogawa Y, Masuda I, Nakanishi K, Yoshimasa T, Hashimoto Y, Yamaguchi M, Hori R, Yasue H, Nakao K (1995) Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation 92(6):1558–1564PubMedGoogle Scholar
  55. 55.
    Nishikimi T, Yoshihara F, Morimoto A, Ishikawa K, Ishimitsu T, Saito Y, Kangawa K, Matsuo H, Omae T, Matsuoka H (1996) Relationship between left ventricular geometry and natriuretic peptide levels in essential hypertension. Hypertension 28:22–30PubMedGoogle Scholar
  56. 56.
    Tanaka T, Hasegawa K, Fujita M, Tamaki SI, Yamazato A, Kihara Y, Nohara R, Sasayama S (1998) Marked elevation of brain natriuretic peptide levels in pericardial fluid is closely associated with left ventricular dysfunction. J Am Coll Cardiol 31(2):399–403PubMedCrossRefGoogle Scholar
  57. 57.
    Ruskoaho H (2003) Cardiac hormones as diagnostic tools in heart failure. Endocr Rev 24(3):341–356PubMedCrossRefGoogle Scholar
  58. 58.
    Ala-Kopsala M, Ruskoaho H, Leppäluoto J, Seres L, Skoumal R, Toth M, Horkay F, Vuolteenaho O (2005) Single assay for amino-terminal fragments of cardiac A- and B-type natriuretic peptides. Clin Chem 51(4):708–718PubMedCrossRefGoogle Scholar
  59. 59.
    Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Tanaka S, Kamikodai Y, Tsuda K, Okazaki S, Maeda H (2007) Postmortem pericardial natriuretic peptides as markers of cardiac function in medico-legal autopsies. Int J Legal Med 121:28–35PubMedCrossRefGoogle Scholar
  60. 60.
    Michaud K, Augsburger M, Donzé N, Sabatasso S, Faouzi M, Bollmann M, Mangin P (2008) Evaluation of postmortem measurement of NT-proBNP as a marker for cardiac function. Int J Legal Med 122:415–420PubMedCrossRefGoogle Scholar
  61. 61.
    Osuna E, Pérez-Cárceles MD, Alvarez MV, Noguera J, Luna A (1998) Cardiac troponin I (cTn I) and the postmortem diagnosis of myocardial infarction. Int J Legal Med 111:173–176PubMedCrossRefGoogle Scholar
  62. 62.
    Ellingsen CL, Hetland Ø (2003) Serum concentrations of cardiac troponin T in sudden death. Am J Forensic Med Pathol 25(3):213–215Google Scholar
  63. 63.
    Davies SJ, Gaze DC, Collinson PO (2005) Investigation of cardiac troponins in postmortem subjects: comparing antemortem and postmortem levels. Am J Forensic Med Pathol 26(3):213–215PubMedCrossRefGoogle Scholar
  64. 64.
    Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Oritani S, Kamikodai Y, Tsuda K, Okazaki S, Maeda H (2006) Postmortem cardiac troponin T levels in the blood and pericardial fluid. Part 1. Analysis with special regard to traumatic causes of death. Leg Med (Tokyo) 8(2):86–93CrossRefGoogle Scholar
  65. 65.
    Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Kamikodai Y, Tsuda K, Okazaki S, Maeda H (2006) Postmortem cardiac troponin T levels in the blood and pericardial fluid. Part 2: analysis for application in the diagnosis of sudden cardiac death with regard to pathology. Leg Med (Tokyo) 8(2):94–101CrossRefGoogle Scholar
  66. 66.
    Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Bessho Y, Kamikodai Y, Tsuda K, Okazaki S, Maeda H (2007) Postmortem cardiac troponin I and creatine kinase MB levels in the blood and pericardial fluid as markers of myocardial damage in medicolegal autopsy. Leg Med (Tokyo) 9(5):241–250CrossRefGoogle Scholar
  67. 67.
    Batalis NI, Marcus BJ, Papadea CN, Collins KA (2010) The role of postmortem cardiac markers in the diagnosis of acute myocardial infarction. J Forensic Sci 55(4):1088–1091PubMedCrossRefGoogle Scholar
  68. 68.
    Whang KT, Steinwald PM, White JC, Nylen ES, Snider RH, Simon GL, Goldberg RL, Becker KL (1998) Serum calcitonin precursors in sepsis and systemic inflammation. J Clin Endocrinol Metab 83(9):3296–3301PubMedCrossRefGoogle Scholar
  69. 69.
    Maruna P, Nedelníková K, Gürlich R (2000) Physiology and genetics of procalcitonin. Physiol Res 49(Suppl 1):S57–S61PubMedGoogle Scholar
  70. 70.
    Meisner M (2002) Pathobiochemistry and clinical use of procalcitonin. Clin Chim Acta 323(1–2):17–29PubMedCrossRefGoogle Scholar
  71. 71.
    Becker KL, Nylén ES, White JC, Müller B, Snider RH (2004) Clinical review 167: procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. J Clin Endocrinol Metab 89(4):1512–1525PubMedCrossRefGoogle Scholar
  72. 72.
    Becker KL, Snider R, Nyles ES (2008) Procalcitonin assay in systemic inflammation, infection, and sepsis: clinical utility and limitation. Crit Care Med 36(3):941–952PubMedCrossRefGoogle Scholar
  73. 73.
    Becker KL, Snider R, Nyles ES (2010) Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. Br J Pharmacol 159(2):253–264PubMedCrossRefGoogle Scholar
  74. 74.
    Sudhir U, Venkatachalaian RK, Kumar TA, Rao MY, Kempegowda P (2011) Significance of serum procalcitonin in sepsis. Indian J Crit Care Med 15(1):1–5PubMedCrossRefGoogle Scholar
  75. 75.
    Tsokos M, Reichelt U, Nierhaus A, Püschel K (2001) Serum procalcitonin (PCT): a valuable biochemical parameter for the postmortem diagnosis of sepsis. Int J Legal Med 114(4–5):237–243PubMedCrossRefGoogle Scholar
  76. 76.
    Ramsthaler F, Kettner M, Mall G, Bratzke H (2008) The use of rapid diagnostic test of procalcitonine serum levels for the postmortem diagnosis of sepsis. Forensic Sci Int 178(2–3):139–145PubMedCrossRefGoogle Scholar
  77. 77.
    Tsokos M, Reichelt U, Jung R, Nierhaus A, Püschel K (2001) Interleukin-6 and C-reactive protein serum levels in sepsis-related fatalities during the early postmortem period. Forensic Sci Int 119(1):47–56PubMedCrossRefGoogle Scholar
  78. 78.
    Uhlin-Hansen L (2001) C-reactive protein (CRP), a comparison of pre- and postmortem blood levels. Forensic Sci Int 124(1):32–35PubMedCrossRefGoogle Scholar
  79. 79.
    Fujita MQ, Zhu BL, Ishida K, Quan L, Oritani S, Maeda H (2002) Serum C-reactive protein levels in postmortem blood—an analysis with special reference to the cause of death and survival time. Forensic Sci Int 130(2–3):160–166PubMedCrossRefGoogle Scholar
  80. 80.
    Astrup BS, Thomsen JL (2007) The routine use of C-reactive protein in forensic investigations. Forensic Sci Int 172(1):49–55PubMedCrossRefGoogle Scholar
  81. 81.
    Maeda H, Zhu BL, Bessho Y, Ishikawa T, Quan L, Michiue T, Zhao D, Li DR, Komatsu A (2008) Postmortem serum nitrogen compounds and C-reactive protein levels with special regard to investigation of fatal hyperthermia. Forensic Sci Med Pathol 4(3):175–180PubMedCrossRefGoogle Scholar
  82. 82.
    Ishikawa T, Hamel M, Zhu BL, Li DR, Zhao D, Michiue T, Maeda H (2008) Comparative evaluation of postmortem serum concentrations of neopterin and C-reactive protein. Forensic Sci Int 179(2–3):135–143PubMedCrossRefGoogle Scholar
  83. 83.
    Reichelt U, Jung R, Nierhaus A, Tsokos M (2005) Serial monitoring of interleukin-1β, soluble interleukin-2 receptor and lipopolysaccharide binding protein levels after death. A comparative evaluation of potential postmortem markers of sepsis. Int J Legal Med 119(2):80–87PubMedCrossRefGoogle Scholar
  84. 84.
    Schumann RR, Kirschning CJ, Unbehaun A, Aberle HP, Knope HP, Lamping N, Ulevitch RJ, Herrmann F (1996) The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APRF/STAT/3 and other cytokine-inducible nuclear proteins. Mol Cell Biol 16(7):3490–3503PubMedGoogle Scholar
  85. 85.
    Sakr Y, Burgett U, Nacul F, Reinhart K, Brunkhorst F (2008) Lipopolysaccharide binding protein in a surgical intensive care unit: a marker of sepsis? Crit Care Med 36(7):2014–2022PubMedCrossRefGoogle Scholar
  86. 86.
    Schrag B, Roux-Lombard P, Schneiter D, Vaucher P, Mangin P, Palmiere C (2011) Evaluation of C-reactive protein, procalcitonin, tumor necrosis factor alpha, interleukin-6 and interleukin-8 as diagnostic parameters in sepsis-related fatalities. Int J Legal Med. doi:10.1007/s00414-011-0596-z
  87. 87.
    Mimasaka S, Hashiyada M, Nata M, Funayama M (2001) Correlation between serum IL-6 levels and death: usefulness in diagnosis of “Traumatic shock”? Tohoku J Exp Med 193(4):319–324PubMedCrossRefGoogle Scholar
  88. 88.
    Mimasaka S (2002) Postmortem cytokine levels and the cause of death. Tohoku J Exp Med 197(3):145–150PubMedCrossRefGoogle Scholar
  89. 89.
    Mimasaka S, Ohtsu Y, Tsunenari S, Funayama M (2006) Postmortem cytokine levels and severity of traumatic injuries. Int J Legal Med 120(5):265–270PubMedCrossRefGoogle Scholar
  90. 90.
    Mimasaka S, Funayama M, Hashiyada M, Nata M, Tsunenari S (2007) Significance of levels of IL-6 and IL-8 after trauma: a study of 11 cytokines post-mortem using multiplex immunoassay. Injury 38(9):1047–1051PubMedCrossRefGoogle Scholar
  91. 91.
    Hoffmann G, Wirleitner B, Fuchs D (2003) Potential role of immune system activation-associated production of neopterin derivatives in humans. Inflamm Res 52(8):313–321PubMedCrossRefGoogle Scholar
  92. 92.
    Hagberg L, Cinque P, Gisslen M, Brew BJ, Spudich S, Bestetti A, Price RW, Fuchs D (2010) Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther 3:7–15Google Scholar
  93. 93.
    Ambach E, Tributsch W, Fuchs D, Reibnegger G, Henn R, Wachter H (1991) Postmortem evaluation of serum and urine neopterin concentrations. J Forensic Sci 36(4):1089–1093PubMedGoogle Scholar
  94. 94.
    Ambach E, Tributsch W, Rabl W, Fuchs D, Reibnegger G, Henn R, Wachter H (1991) Postmortem neopterin concentrations: comparison of diagnoses with and without cellular immunological background. Int J Legal Med 104(5):259–262PubMedCrossRefGoogle Scholar
  95. 95.
    Payne V, Kam CA (2004) Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia 59:695–703PubMedCrossRefGoogle Scholar
  96. 96.
    Joint Task Force on Practice Parameters, American Academy of Allergy, Asthma and Immunology, American College of Allergy, Asthma and Immunology, Joint Council of Allergy, Asthma and Immunology (2005) The diagnosis and management of anaphylaxis: an updated practice parameter. J Allergy Clin Immunol 115:S483–S523CrossRefGoogle Scholar
  97. 97.
    Hogan AD, Schwartz LB (1997) Markers of mast cell degranulation. Methods 13(1):43–52PubMedCrossRefGoogle Scholar
  98. 98.
    Caughey GH (2006) Tryptase genetics and anaphylaxis. J Allergy Clin Immunol 117(6):1411–1414PubMedCrossRefGoogle Scholar
  99. 99.
    Edston E, van Hage-Hamsten M (1996) Tryptase—at last a useful diagnostic marker for anaphylactic death. Allergy 51(6):443–445PubMedGoogle Scholar
  100. 100.
    Edston E, van Hage-Hamsten M (1998) β-Tryptase measurements postmortem in anaphylactic deaths and in control. Forensic Sci Int 93(2–3):135–142PubMedCrossRefGoogle Scholar
  101. 101.
    Yunginger JW, Nelson DR, Squillace DL, Jones RT, Holley KE, Hyma BA, Schwartz LB (1991) Laboratory investigation of deaths due to anaphylaxis. J Forensic Sci 36(3):857–865PubMedGoogle Scholar
  102. 102.
    Ansari MQ, Zamora JL, Lipscomb MF (1993) Postmortem diagnosis of acute anaphylaxis by serum tryptase analysis. A case report. Am J Clin Pathol 99(1):101–103PubMedGoogle Scholar
  103. 103.
    Fineschi V, Monasterolo G, Rosi R, Turillazzi E (1999) Fatal anaphylactic shock during a fluorescein angiography. Forensic Sci Int 100(1–2):137–142PubMedCrossRefGoogle Scholar
  104. 104.
    Pumphrey RS, Roberts IS (2000) Postmortem findings after fatal anaphylactic reactions. J Clin Pathol 53(4):273–276PubMedCrossRefGoogle Scholar
  105. 105.
    Konarzewski W, De’Ath S (2001) Unrecognised fatal anaphylactic reaction to propofol or fentanyl. Anaesthesia 56:497–498PubMedCrossRefGoogle Scholar
  106. 106.
    Way MG, Baxendine CL (2002) The significance of postmortem tryptase levels in supporting a diagnosis of anaphylaxis. Anaesthesia 57:310–311PubMedCrossRefGoogle Scholar
  107. 107.
    Riches KJ, Gillis D, James RA (2002) A autopsy approach to bee sting-related deaths. Pathology 34(3):257–262PubMedCrossRefGoogle Scholar
  108. 108.
    Edston E, van Hage-Hamsten M (2003) Death in anaphylaxis in a man with house dust mite allergy. Int J Legal Med 117(5):299–301PubMedCrossRefGoogle Scholar
  109. 109.
    Hitosugi M, Omura K, Yokoyama T, Kawato H, Motozawa Y, Nagai T, Tokudome S (2004) An autopsy case of fatal anaphylactic shock following fluorescein angiography: a case report. Med Sci Law 44(3):264–265PubMedCrossRefGoogle Scholar
  110. 110.
    Low I, Stables S (2006) Anaphylactic deaths in Auckland, New Zeland: a review of coronial autopsies from 1985 to 2005. Pathology 38(4):328–332PubMedCrossRefGoogle Scholar
  111. 111.
    Edston E, Eriksson O, van Hage-Hamsten M (2007) Mast cell tryptase in postmortem serum—reference values and confounders. Int J Legal Med 121(4):275–280PubMedCrossRefGoogle Scholar
  112. 112.
    Osawa M, Satoh F, Horiuchi H, Tian W, Kugota N, Hasegawa I (2008) Postmortem diagnosis of fatal anaphylaxis during intravenous administration of therapeutic and diagnostic agents: evaluation of clinical laboratory parameters and immunohistochemistry in three cases. Leg Med (Tokyo) 179(2–3):135–143Google Scholar
  113. 113.
    Platt MS, Yunginger JW, Sekula-Perlman A, Irani AM, Smialek J, Mirchandani HG, Schwartz LB (1994) Involvement of mast cells in sudden infant death syndrome. J Allergy Clin Immunol 94:250–256PubMedGoogle Scholar
  114. 114.
    Holgate S, Walters C, Walls AF, Lawrence S, Shell DJ, Variend S, Fleming PJ, Berry PJ, Gilbert RE, Robinson C (1994) The anaphylaxis hypothesis of sudden infant death syndrome (SIDS): mast cell degranulation in cot death revealed by elevated concentrations of tryptase in serum. Clin Exp Allergy 24:1115–1122PubMedGoogle Scholar
  115. 115.
    Randall B, Butts J, Halsey F (1995) Elevated postmortem tryptase in the absence of anaphylaxis. J Forensic Sci 40:208–211PubMedGoogle Scholar
  116. 116.
    Edston E, van Hage-Hamsten M (1997) Anaphylactoid shock—a common cause of death in heroin addicts? Allergy 52(9):950–954PubMedCrossRefGoogle Scholar
  117. 117.
    Edston E, Gidlund E, Wickman M, Ribbing H, van Hage-Hamsten M (1999) Increased mast cell tryptase in sudden infant death—anaphylaxis, hypoxia or artifact? Clin Exp Allergy 29(12):1648–1654PubMedCrossRefGoogle Scholar
  118. 118.
    Fineschi V, Cecchi R, Centini F, Paglicci Reattelli L, Turillazzi E (2001) Immunohistochemical quantification of pulmonary mast-cells and post-mortem blood dosages of tryptases and eosinophil cationic protein in 48 heroin-related deaths. Forensic Sci Int 120(3):189–194PubMedCrossRefGoogle Scholar
  119. 119.
    Buckley MG, Variend S, Walls AF (2001) Elevated serum concentrations of beta-tryptase, but not alpha-tryptase, in sudden death infant syndrome. An investigation of anaphylactic mechanisms. Clin Exp Allergy 31(11):1696–1704PubMedCrossRefGoogle Scholar
  120. 120.
    Edston E, van Hage-Hamsten M (2003) Mast cell tryptase and hemolysis after trauma. Forensic Sci Int 131(1):8–13PubMedCrossRefGoogle Scholar
  121. 121.
    Nishio H, Suzuki K (2004) Serum tryptase levels in sudden infant death syndrome in forensic autopsy cases. Forensic Sci Int 139(1):57–60PubMedCrossRefGoogle Scholar
  122. 122.
    Horn KD, Halsey JF, Zumwalt RE (2004) Utilisation of serum tryptase and immunoglobulin E assay in the postmortem diagnosis of anaphylaxis. Am J Forensic Med Pathol 25(1):37–43PubMedCrossRefGoogle Scholar
  123. 123.
    Da Broi U, Moreschi C (2011) Post-mortem diagnosis of anaphylaxis: a difficult task in forensic medicine. Forensic Sci Int 204(1–3):1–5PubMedCrossRefGoogle Scholar
  124. 124.
    Mayer DE, Krauskopf A, Hemmer W, Moritz K, Jarisch R, Reitner C (2011) Usefulness of post mortem determination of serum tryptase, histamine and diamine oxidase in the diagnosis of fatal anaphylaxis. Forensic Sci Int. doi:10.1016/j.forsciint.2011.05.020
  125. 125.
    Nishio H, Takai S, Miyazaki M, Horiuchi H, Osawa M, Uemura K, Yoshida K, Mukaida M, Ueno Y, Suzuki K (2005) Usefulness of serum mast cell-specific chymase levels for postmortem diagnosis of anaphylaxis. Int J Legal Med 119(6):331–334PubMedCrossRefGoogle Scholar
  126. 126.
    Ishikawa T, Quan L, Li DR, Zhao D, Michiue T, Hamel M, Maeda H (2008) Postmortem biochemistry and immunohistochemistry of adrenocorticotropic hormone with special regard to fatal hypothermia. Forensic Sci Int 179(2–3):147–151PubMedCrossRefGoogle Scholar
  127. 127.
    Ishikawa T, Miyaishi S, Tachibana T, Ishizu H, Zhu BL, Maeda H (2004) Fatal hypothermia related vacuolation of hormone-producing cells in the anterior pituitary. Leg Med (Tokyo) 6(3):157–163CrossRefGoogle Scholar
  128. 128.
    Müller E, Franke WG, Koch R (1997) Thyreoglobulin and violent asphyxia. Forensic Sci Int 90(3):165–170PubMedCrossRefGoogle Scholar
  129. 129.
    Şenol E, Demirel B, Akar T, Gülbahar O, Bakar C, Bukan N (2008) The analysis of hormones and enzymes extracted from endocrine glands of the neck region in deaths due to hanging. Am J Forensic Med Pathol 29(1):49–54PubMedCrossRefGoogle Scholar
  130. 130.
    Edston E, Druid H, Holmgren P, Oström M (2001) Postmortem measurements of thyroid hormones in blood and vitreous humor combined with histology. Am J Forensic Med Pathol 22(1):78–83PubMedCrossRefGoogle Scholar
  131. 131.
    Dressler J, Mueller E (2006) High thyroglobulin (Tg) concentrations in fatal traumatic brain injuries. Am J Forensic Med Pathol 27(3):280–282PubMedCrossRefGoogle Scholar
  132. 132.
    Ishikawa T, Michiue T, Zhao D, Komatsu A, Azuma Y, Quan L, Hamel M, Maeda H (2009) Evaluation of postmortem serum and cerebrospinal fluid levels of thyroid-stimulating hormone with special regard to fatal hypothermia. Leg Med Tokyo 11(1):S228–S230PubMedCrossRefGoogle Scholar
  133. 133.
    Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Quan L, Oritani S, Bessho Y, Maeda H (2007) Postmortem serum catecholamine levels in relation to the cause of death. Forensic Sci Int 173(2–3):122–129PubMedCrossRefGoogle Scholar
  134. 134.
    Wilke N, Janssen H, Fahrenhorst C, Hecker H, Manns MP, Brabant EG, Tröger HD, Breitmeier D (2007) Postmortem determination of concentrations of stress hormones in various body fluids—is there a dependency between adrenaline/noradrenaline quotient, cause of death and agony time? Int J Legal Med 121(5):385–394PubMedCrossRefGoogle Scholar
  135. 135.
    Ishikawa T, Yoshida C, Michiue T, Perdekamp MG, Pollak S, Maeda H (2010) Immunohistochemistry of catecholamine in the hypothalamic-pituitary-adrenal system with special regard to fatal hypothermia and hyperthermia. Leg Med (Tokyo) 12(3):121–127CrossRefGoogle Scholar
  136. 136.
    Finlayson NB (1965) Blood cortisol in infants and adults: a postmortem study. J Pediatr 67:284–292CrossRefGoogle Scholar
  137. 137.
    Kubo S, Kitamura O, Orihara Y, Tsuda R, Hirose W, Nakasono I (1997) Isolated adrenocorticotropic hormone deficiency: an autopsy case of adrenal crisis. A case report. Am J Forensic Med Pathol 18(2):202–205PubMedCrossRefGoogle Scholar
  138. 138.
    Al Sabri AM, Smith N, Busuttil A (1997) Sudden death due to auto-immune Addison’s disease in a 12-year-old girl. Int J Legal Med 110(5):278–280PubMedCrossRefGoogle Scholar
  139. 139.
    Burke MP, Opeskin K (1999) Adrenocortical insufficiency. Am J Forensic Med Pathol 20(1):60–65PubMedCrossRefGoogle Scholar
  140. 140.
    Clapper A, Nashelsky M, Dailey M (2008) Evaluation of serum cortisol in the postmortem diagnosis of acute adrenal insufficiency. Am J Forensic Med Pathol 29(2):181–184PubMedCrossRefGoogle Scholar
  141. 141.
    Fanton L, Bévalot F, Cartiser N, Palmiere C, Le Meur C, Malicier D (2010) Postmortem measurement of human chorionic gonadotropin in vitreous humor and bile. J Forensic Sci 55(3):792–794PubMedCrossRefGoogle Scholar
  142. 142.
    Marsden JT (2006) Erythropoietin—measurement and clinical applications. Ann Clin Biochem 43:97–104PubMedCrossRefGoogle Scholar
  143. 143.
    Quan L, Zhu BL, Ishikawa T, Michiue T, Zhao D, Li DR, Ogawa M, Maeda H (2008) Postmortem serum erythropoietin levels in establishing the cause of death and survival time at medicolegal autopsy. Int J Legal Med 122(6):481–487PubMedCrossRefGoogle Scholar
  144. 144.
    Quan L, Zhu BL, Ishikawa T, Michiue T, Zhao D, Ogawa M, Maeda H (2010) Postmortem serum erythropoietin level as a marker of survival time in injury deaths. Forensic Sci Int 200(1–3):117–122PubMedCrossRefGoogle Scholar
  145. 145.
    Yoshida C, Ishikawa T, Michiue T, Quan L, Maeda H (2011) Postmortem biochemistry and immunohistochemistry of chromogranin A as a stress marker with special regard to fatal hypothermia and hyperthermia. Int J Legal Med 125(1):11–20PubMedCrossRefGoogle Scholar
  146. 146.
    Li DR, Zhu BL, Ishikawa T, Zhao D, Michiue T, Maeda H (2006) Postmortem serum protein S100B levels with regard to the cause of death involving brain damage in medicolegal autopsy cases. Leg Med (Tokyo) 8(2):71–77CrossRefGoogle Scholar
  147. 147.
    Li DR, Zhu BL, Ishikawa T, Zhao D, Michiue T, Maeda H (2006) Immunohistochemical distribution of S-100 protein in the cerebral cortex with regard to the cause of death in forensic autopsy. Leg Med (Tokyo) 8(2):78–85CrossRefGoogle Scholar
  148. 148.
    Li DR, Michiue T, Zhu BL, Ishikawa T, Quan L, Zhao D, Yoshida C, Chen JH, Wang Q, Komatsu A, Azuma Y, Maeda H (2009) Evaluation of postmortem S100B levels in the cerebrospinal fluid with regard to the cause of death in medicolegal autopsy. Leg Med Tokyo 11(1):S273–S275PubMedCrossRefGoogle Scholar
  149. 149.
    Li DR, Ishikawa T, Quan L, Zhao D, Michiue T, Zhu BL, Wang HJ, Maeda H (2010) Morphological analysis of astrocytes in the hippocampus in mechanical asphyxiation. Leg Med (Tokyo) 12(2):63–67CrossRefGoogle Scholar
  150. 150.
    Quan L, Ishikawa T, Hara J, Michiue T, Chen JH, Wang Q, Zhu BL, Maeda H (2011) Postmortem serotonin levels in cerebrospinal and pericardial fluids with regard to the cause of death in medicolegal autopsy. Leg Med (Tokyo) 13(2):75–78CrossRefGoogle Scholar
  151. 151.
    Musshoff F, Menting T, Madea B (2004) Postmortem serotonin (5-HT) concentrations in the cerebrospinal fluid of medicolegal cases. Forensic Sci Int 142(2–3):211–219PubMedCrossRefGoogle Scholar
  152. 152.
    Püschel K, Lockemann U, Bartel J (1995) Postmortem investigation of serum myoglobin levels with special reference to electrical fatalities. Forensic Sci Int 72(3):171–177PubMedCrossRefGoogle Scholar
  153. 153.
    Fieguth A, Schumann G, Tröger HD, Kleemann WJ (1999) The effect of lethal electrical shock on postmortem serum myoglobin concentrations. Forensic Sci Int 105(2):75–82PubMedCrossRefGoogle Scholar
  154. 154.
    Zhu BL, Ishida K, Quan L, Taniguchi M, Oritani S, Kamikodai Y, Fujita MQ, Maeda H (2001) Post-mortem urinary myoglobin levels with reference to the cause of death. Forensic Sci Int 115(3):183–188PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.University Centre of Legal MedicineLausanneSwitzerland

Personalised recommendations