International Journal of Legal Medicine

, Volume 126, Issue 1, pp 121–128 | Cite as

Analysis of 12 X-STRs in Greenlanders, Danes and Somalis using Argus X-12

  • Carmen Tomas
  • Vânia Pereira
  • Niels Morling
Original Article


X-chromosome markers have become a useful set of markers of choice when certain complex kinship cases need to be unravelled. The Argus X-12 kit allows the co-amplification in a single PCR reaction of 12 X-chromosome short tandem repeats located in four linkage groups. A number of 507 unrelated individuals from Greenland, Denmark and Somalia together with two generation families were typed using the Argus X-12 kit. Silent alleles for the DXS10148 and DXS10146 systems were observed in males, mostly from Somalia. High levels of intrapopulation variability and therefore high forensic parameter values were calculated for the three studied populations. The population in Greenland showed a significantly lower intrapopulation variability and a high genetic differentiation compared with 13 other populations. Significant levels of linkage disequilibrium were observed between markers belonging to the same linkage group, mainly in the populations in Greenland and Somalia. Family studies allowed the calculation of mutation and recombination frequencies. A higher male versus female mutation rate was obtained, with an average value of 3.3 × 10−3. Recombination fraction calculations performed on two generation families showed, as previously described, a not complete independence between X-chromosome linkage groups 3 and 4.


Argus X-12 X-STRs Linkage Linkage disequilibrium Greenland Denmark Somalia 



We thank Marianne Olesen and Nadia Jochumsen for excellent technical assistance. Vânia Pereira has a Ph.D. scholarship from the Portuguese Foundation for Science and Technology (FCT) (grant reference SFRH/BD/70881/2010).

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

414_2011_609_MOESM1_ESM.pdf (42 kb)
Supplementary Table 1 PCR and sequencing primers designed for the DXS10148 and DXS10146 systems. (PDF 41.8 kb)
414_2011_609_MOESM2_ESM.pdf (43 kb)
Supplementary Table 2 Sequences of the DXS10148 and DXS10146 silent alleles. (PDF 43.3 kb)
414_2011_609_MOESM3_ESM.pdf (303 kb)
Supplementary Table 3 Allele frequencies of 12 X-STRs in the Greenlandic (GRL), Danish (DK) and Somali (SOM) populations. (PDF 302 kb)
414_2011_609_MOESM4_ESM.pdf (846 kb)
Supplementary Table 4 Haplotype frequencies for 4 X-chromosome linkage groups analysed with Argus X-12. (PDF 846 kb)
414_2011_609_MOESM5_ESM.pdf (572 kb)
Supplementary Table 5 Pairwise F ST values calculated for 12 X-STRs. (PDF 571 kb)


  1. 1.
    Szibor R, Krawczak M, Hering S, Edelmann J, Kuhlisch E, Kraune D (2003) Use of X-linked markers for forensic purposes. Int J Legal Med 117:67–74PubMedGoogle Scholar
  2. 2.
    Gomes I, Prinz M, Pereira R, Meyers C, Mikulasovich RS, Amorim A, Carracedo A, Gusmão L (2007) Genetic analysis of three US population groups using an X-chromosomal STR decaplex. Int J Legal Med 121(3):198–203PubMedCrossRefGoogle Scholar
  3. 3.
    Becker D, Rodig H, Augustin C, Edelmann J, Götz F, Hering S, Szibor R, Brabetz W (2008) Population genetic evaluation of eight X-chromosomal short tandem repeat loci using Mentype Argus X-8 PCR amplification kit. FSI Genetics 2:69–74PubMedGoogle Scholar
  4. 4.
    Tomas C, Sanchez JJ, Castro JA, Børsting C, Morling N (2010) Forensic usefulness of a 25 X-chromosome single-nucleotide polymorphism marker set. Transfusion 50(10):2258–2265PubMedCrossRefGoogle Scholar
  5. 5.
    Ribeiro-Rodrigues EM, Carneiro Dos Santos NP, Ribeiro Dos Santos AKC, Pereira R, Amorim A, Gusmão L, Zago MA, Batista Dos Santos SE (2009) Assessing interethnic admixture using an X-linked insertion-deletion multiplex. Am J Hum Biol 21:707–709PubMedCrossRefGoogle Scholar
  6. 6.
    Edelmann J, Hering S, Augustin C, Szibor R (2009) Indel polymorphisms—an additional set of markers on the X-chromosome. FSI Genetics Supplement Series 2:510–512CrossRefGoogle Scholar
  7. 7.
    Poetsch M, Petersmann H, Repenning A, Lignitz E (2005) Development of two pentaplex systems with X-chromosomal STR loci and their allele frequencies in a northeast German population. Forensic Sci Int 155:71–76PubMedCrossRefGoogle Scholar
  8. 8.
    Hering S, Augustin C, Edelmann J, Heidel M, Dressler J, Rodig H, Kuhlisch E, Szibor R (2006) DXS10079, DXS10074 and DXS10075 are STRs located within a 280-kb region of Xq12 and provide stable haplotypes useful for complex kinship cases. Int J Legal Med 120:337–345PubMedCrossRefGoogle Scholar
  9. 9.
    Hundertmark T, Hering S, Edelmann J, Augustin C, Plate I, Szibor R (2008) The STR cluster DXS10148–DXS8378–DXS10135 provides a powerful tool for X-chromosomal haplotyping at Xp22. Int J Legal Med 122:489–495PubMedCrossRefGoogle Scholar
  10. 10.
    Edelmann J, Hering S, Augustin C, Szibor R (2008) Characterisation of the STR markers DXS10146, DXS10134 and DXS10147 located within a 79.1 kb region at Xq28. FSI Genetics 2:41–46PubMedGoogle Scholar
  11. 11.
  12. 12.
    Tillmar AO, Egeland T, Lindblom B, Holmlund G, Mostad P (2010) Using X-chromosomal markers in relationship testing: calculation of likelihood ratios taking both linkage and linkage disequilibrium into account. FSI Genetics. doi: 10.1016/j.fsigen.2010.11.004
  13. 13.
    Excoffier L, Lischer HEL (2010) Arlequin ver. 3.5, Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  14. 14.
    Edelmann J, Lutz-Bonengel S, Hering S (2011) X-chromosomal haplotype frequencies of four linkage groups using the Investigator Argus X-12 kit. FSI Genetics. doi: 10.1016/j.fsigen.2011.01.001
  15. 15.
    Inturri S, Menegon S, Amoroso A, Torre C, Robino C (2011) Linkage and linkage disequilibrium analysis of X-STRs in Italian families. FSI Genetics 5:152–154PubMedGoogle Scholar
  16. 16.
    Bekada A, Benhamamouch S, Boudjema A, Fodil M, Menegon S, Torre C, Robino C (2010) Analysis of 21 X-chromosomal STRs in an Algerian population sample. Int J Legal Med 124:287–294PubMedCrossRefGoogle Scholar
  17. 17.
    Hedman M, Palo JU, Sajantila A (2009) X-STR diversity patterns in the Finnish and the Somali population. FSI Genetics 3:173–178Google Scholar
  18. 18.
    Zalán A, Völgyi A, Jung M, Peterman O, Pamjav H (2007) Hungarian population data of four X-linked markers: DXS8378, DXS7132, HPRTB, and DXS7423. Int J Legal Med 121:74–77PubMedCrossRefGoogle Scholar
  19. 19.
    Zalán A, Völgyi A, Brabetz W, Schleinitz D, Pamjav H (2008) Hungarian population data of eight X-linked markers in four linkage groups. Forensic Sci Int 175:73–78PubMedCrossRefGoogle Scholar
  20. 20.
    Lim EJ, Lee HY, Sim JE, Yang WI, Shin KJ (2009) Genetic polymorphism and haplotype analysis of 4 tightly linked X-STR duos in Koreans. Croat Med J 50:305–312PubMedCrossRefGoogle Scholar
  21. 21.
    Thiele K, Löffler S, Löffler J, Günthner F, Nitschke K, Edelmann J, Lessig R (2008) Population data of eight X-chromosomal STR markers in Ewe individuals from Ghana. FSI Genetics Supplement Series 1:167–169CrossRefGoogle Scholar
  22. 22.
    Luczak S, Rogalla U, Malyarchuk BA, Grzybowski T (2010) Diversity of 15 human X chromosome microsatellite loci in Polish populations. FSI Genetics 5:e71–77Google Scholar
  23. 23.
    Tie J, Uchigasaki S, Oshida S (2010) Genetic polymorphisms of eight X-chromosomal STR loci in the population of Japanese. FSI Genetics 4:e105–e108PubMedGoogle Scholar
  24. 24.
    Luo H-B, Ye Y, Wang Y-Y, Liang W-B, Yun L-B, Liao M, Yan J, Wu J, Li Y-B, Hou Y-P (2011) Characteristics of eight X-STR loci for forensic purposes in the Chinese population. Int J Legal Med 125:127–131PubMedCrossRefGoogle Scholar
  25. 25.
    Desmarais D, Zhong Y, Chakraborty R, Perreault C, Busque L (1998) Development of a highly polymorphic STR marker for identity testing purposes at the human androgen receptor gene (HUMARA). J Forensic Sci 43(5):1046–1049PubMedGoogle Scholar
  26. 26.
    Lange K, Cantor R, Horvath S, Perola M, Sabatti C, Sinsheimer J, Sobel E (2001) MENDEL version 4.0: a complete package for the exact genetic analysis of discrete traits in pedigree and population data sets. Am J Hum Genet Supplement 69:504Google Scholar
  27. 27.
    Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:3–62Google Scholar
  28. 28.
    Mertens G, Gielis M, Mommers N, Mularoni A, Lamartine J, Heylen H, Muylle L, Vandenberghe A (1999) Mutation of the repeat number of the HPRTB locus and structure of rare intermediate alleles. Int J Legal Med 112:192–194PubMedCrossRefGoogle Scholar
  29. 29.
    Ardlie KG, Kruglyak L, Seielstad M (2002) Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 3:299–309PubMedCrossRefGoogle Scholar
  30. 30.
    Bosch E, Calafell F, Rosser ZH, Nørby S, Lynnerup N, Hurles ME, Jobling MA (2003) High level of male-biased Scandinavian admixture in Greenlandic Inuit shown by Y-chromosomal analysis. Hum Genet 112:353–363PubMedGoogle Scholar
  31. 31.
    Hallenberg C, Tomas C, Simonsen B, Morling N (2009) Y-chromosome STR haplotypes in males from Greenland. FSI Genetics 3:e145–e146PubMedGoogle Scholar
  32. 32.
    Sanchez JJ, Børsting C, Hernandez A, Mengel-Jørgensen J, Morling N (2004) Y chromosome SNP haplogroups in Danes, Greenlanders and Somalis. Int Congr Ser 1261:347–349CrossRefGoogle Scholar
  33. 33.
    Saillard J, Forster P, Lynnerup N, Bandelt H-J, Nørby S (2000) MtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am J Hum Genet 67:718–726PubMedCrossRefGoogle Scholar
  34. 34.
    Helgason A, Pálsson G, Pedersen HS, Angulalik E, Gunnarsdóttir ED, Yngvadóttir B, Stefánsson K (2006) MtDNA variation in Inuti populations of Greenland and Canada: migration history and population structure. Am J Phys Anthropol 130:123–134PubMedCrossRefGoogle Scholar
  35. 35.
    Gilbert MTP, Kivisild T, Grønnow B et al (2010) Paleo-Eskimo mtDNA genome reveals matrilineal discontinuity in Greenland. Science 320:1787–1789CrossRefGoogle Scholar
  36. 36.
    Rasmussen M, Li Y, Lindgreen S et al (2010) Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:757–762PubMedCrossRefGoogle Scholar
  37. 37.
    Brinkmann B, Klintschar M, Nuehuber F, Hühne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415PubMedCrossRefGoogle Scholar
  38. 38.
    Rolf B, Wiegand P, Brinkmann B (2002) Somatic mutations at STR loci—a reason for three-allele pattern and mosaicism. Forensic Sci Int 126:200–202PubMedCrossRefGoogle Scholar
  39. 39.
    Tillmar AO, Mostad P, Egeland T, Lindblom B, Holmlund G, Montelius K (2008) Analysis of linkage and linkage disequilibrium for eight X-STR markers. FSI Genetics 3:37–41Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Faculty of SciencesUniversity of PortoPortoPortugal
  3. 3.IPATIMUP, Institute of Molecular Pathology and Immunology of the University of PortoPortoPortugal

Personalised recommendations