Advertisement

International Journal of Legal Medicine

, Volume 125, Issue 3, pp 417–425 | Cite as

Age and gender-dependent bone density changes of the human skull disclosed by high-resolution flat-panel computed tomography

  • Christina Schulte-Geers
  • Martin ObertEmail author
  • René L. Schilling
  • Sebastian Harth
  • Horst Traupe
  • Elke R. Gizewski
  • Marcel A. Verhoff
Original Article

Abstract

Introduction

The objective of this article was to estimate the age at death in forensic or anthropologic applications based on human skull investigation. Sex-dependent differences were analyzed.

Methods

Digital, high-resolution, flat-panel-based volumetric computed tomography (eXplore Locus Ultra scanner) images (165,920) of 244 European human skulls–163 males, 81 females–were analyzed according to their radiological bone density, based on Hounsfield units (H) that are directly related to the x-ray attenuation of the scanned material. Data were collected by the Department of Forensic Medicine at the University Hospital Giessen and Marburg during 2007 and 2008. Correlation analysis was used for data description.

Results

Human skull density estimates are widely scattered as a function of age for both sexes. Male skull bone density remains constant during lifetime, whereas female skull bone density decays slowly from approximately 20 years onwards.

Conclusions

Bone density decay only theoretically provides a new method to determine age at death for adult females. Due to the scattering of the data, an accuracy of approximately ±18 years is found at a confidence interval of 75%, which is, unfortunately, of limited practical interest. We found new sex differences of bone density decay in the skull that are potentially of relevance for the general understanding of bone degradation processes.

Keywords

Age at death determination Hounsfield unit density distribution Bone density Sex differences Flat-panel volumetric computed tomography 

Notes

Acknowledgments

We would like to thank Nicole Graf and Manfred Benner for the preparation of the skull specimen. We thank Sehib Tuerkay, Barbara Ahlemeyer, and Manfred Sernetz for helpful discussions.

References

  1. 1.
    Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193:1–13PubMedCrossRefGoogle Scholar
  2. 2.
    Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Leg Med 124:321–325CrossRefGoogle Scholar
  3. 3.
    Schmidt S, Nitz I, Schulz R, Schmeling A (2008) Applicability of the skeletal age determination method of Tanner and Whitehouse for forensic age diagnostics. Int J Leg Med 122:309–314CrossRefGoogle Scholar
  4. 4.
    Kellinghaus M, Schulz R, Vieth V, Schmidt S, Schmeling A (2010) Forensic age estimation in living subjects based on the ossification status of the medial clavicular epiphysis as revealed by thin-slice multidetector computed tomography. Int J Leg Med 124:149–154CrossRefGoogle Scholar
  5. 5.
    Knell B, Ruhstaller P, Prieels F, Schmeling A (2009) Dental age diagnostics by means of radiographical evaluation of the growth stages of lower wisdom teeth. Int J Leg Med 123:465–469CrossRefGoogle Scholar
  6. 6.
    Olze A, Solheim T, Schulz R, Kupfer M, Pfeiffer H, Schmeling A (2010) Assessment of the radiographic visibility of the periodontal ligament in the lower third molars for the purpose of forensic age estimation in living individuals. Int J Leg Med 124:445–448CrossRefGoogle Scholar
  7. 7.
    Olze A, Solheim T, Schulz R, Kupfer M, Schmeling A (2010) Evaluation of the radiographic visibility of the root pulp in the lower third molars for the purpose of forensic age estimation in living individuals. Int J Leg Med 124:183–186CrossRefGoogle Scholar
  8. 8.
    Macchiarelli R, Bonduoli L (1994) Linear densitometry and digital image processing of proximal femur radiographs: implications for archaeological and forensic anthropology. Am J Phys Anthropol 93:109–122PubMedCrossRefGoogle Scholar
  9. 9.
    Rissech C, Schaefer M, Malgosa A (2008) Development of the femur–implications for age and sex determination. Forensic Sci Int 180:1–9PubMedCrossRefGoogle Scholar
  10. 10.
    Ríos L, Weisensee K, Rissech C (2008) Sacral fusion as an aid in age estimation. Forensic Sci Int 180:111.e1–111.e7CrossRefGoogle Scholar
  11. 11.
    Pasquier E, De Saint Martin Pernot L, Burdin V, Mounayer C, Le Rest C, Colin D, Mottier D, Roux C, Baccino E (1999) Determination of age at death: assessment of an algorithm of age prediction using numerical three-dimensional CT data from pubic bones. Am J Phys Anthropol 108:261–268PubMedCrossRefGoogle Scholar
  12. 12.
    Brooks S, Suchey JM (1990) Skeletal age determination based on the os pubis: a comparison of the Acsàdi-Nemeskéri and Suchey-Brooks methods. Hum Evol 5:227–238CrossRefGoogle Scholar
  13. 13.
    Ferrant O, Rougé-Maillart C, Guittet L, Papin F, Clin B, Fau G, Telmon N (2009) Age at death estimation of adult males using coxal bone and CT scan: a preliminary study. Forensic Sci Int 186:14–21PubMedCrossRefGoogle Scholar
  14. 14.
    Meinl A, Huber CD, Tangl S, Gruber GM, Teschler-Nicola M, Watzek G (2008) Comparison of the validity of three dental methods for the estimation of age at death. Forensic Sci Int 178:96–105PubMedCrossRefGoogle Scholar
  15. 15.
    Dobberstein RC, Tung S-M, Ritz-Timme S (2010) Aspartic acid racemisation in purified elastin from arteries as basis for age estimation. Int J Leg Med 124:269–275CrossRefGoogle Scholar
  16. 16.
    Dorandeu A, Coulibaly B, Piercecchi-Marti MD, Bartoli C, Gaudart J, Baccino E, Leonetti G (2008) Age-at-death estimation based on the study of frontosphenoidal sutures. Forensic Sci Int 177:47–51PubMedCrossRefGoogle Scholar
  17. 17.
    Obert M, Ahlemeyer B, Baumgart-Vogt E, Traupe H (2005) Flat-panel volumetric computed tomography a new method for visualizing fine bone detail in living mice. J Comput Assist Tomogr 29:560–565PubMedCrossRefGoogle Scholar
  18. 18.
    Verhoff MA, Karger B, Ramsthaler F, Obert M (2008) Investigations on an isolated skull with gunshot wounds using flat-panel CT. Int J Leg Med 122:441–445CrossRefGoogle Scholar
  19. 19.
    Reuß C, Obert M, Schilling R, Harth S, Traupe H, Verhoff MA (2008) Automatische Analyse von hochauflösenden flat-panel Computertomographie-Bildern zur Bestimmung des Verknöcherungszustandes von Suturen zur Altersbestimmung beim Menschen. 87th Annual conference of the German forensic society, DresdenGoogle Scholar
  20. 20.
    Obert M, Schulte-Geers C, Schilling RL, Harth S, Kläver M, Traupe H, Verhoff MA (2010) High-resolution flat-panel volumetric CT images show no correlation between human age and suture obliteration–independent of sex. Forensic Sci Int 180:180.e1–180.e12CrossRefGoogle Scholar
  21. 21.
    IDL reference guide, version 6.0 (2003) Research Systems Inc., RSI, Boulder, CO, USAGoogle Scholar
  22. 22.
    Crow EL, Davis FA, Maxfield MW (1960) Statistics manual. Dover Publications, New YorkGoogle Scholar
  23. 23.
    Zwillinger D, Kokoska S (2000) CRC standard probability and statistics tables and formulae. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  24. 24.
    Beichelt FE, Montgomery DC (2003) Teubner-Taschenbuch der Stochastik. Wahrscheinlichkeitstheorie, Stochastische Prozesse, Mathematische Statistik. B.G. Teubner, StuttgartGoogle Scholar
  25. 25.
    Madeline LA, Elster AD (1995) Suture closure in the human chondrocranium: CT assessment. Radiology 196:747–756PubMedGoogle Scholar
  26. 26.
    Robinson MS, Bidmos MA (2009) The skull and humerus in the determination of sex: reliability of discriminant function equations. Forensic Sci Int 186:86.e1–86.e5CrossRefGoogle Scholar
  27. 27.
    Steyn M, Iscan MY (1998) Sexual dimorphism in the crania and mandibles of South African whites. Forensic Sci Int 98:9–16PubMedCrossRefGoogle Scholar
  28. 28.
    Steiger P, Cummings SR, Black DM, Spencer NE, Genant HK (1992) Age-related decrements in bone mineral density in women over 65. J Bone Miner Res 7:625–632PubMedCrossRefGoogle Scholar
  29. 29.
    Ribot C, Tremlliers F, Poullies JM, Louvet JP, Guiraud R (1988) Influence of the menopause and aging on spinal density in French women. Bone Miner 5:89–97PubMedCrossRefGoogle Scholar
  30. 30.
    Ortolani S, Trevisan C, Bianchi ML, Caraceni MP, Ulivieri FM, Gandolini G, Montessano A, Polli EE (1991) Spinal and forearm bone mass in relation to ageing and menopause in healthy Italian women. Eur J Clin Investig 21:33–39CrossRefGoogle Scholar
  31. 31.
    Guglielmi G, Giannatempo GM, Blunt BA, Grampp S, Glüer CC, Cammisa M, Genant HK (1995) Spinal bone mineral density by quantitative CT in a normal Italian population. Eur Radiol 5:269–275Google Scholar
  32. 32.
    Jahng JS, Kang KS, Park HW, Han MH (1991) Assessment of bone mineral density in postmenopausal and senile osteoporosis using quantitative CT. Orthopedics 14:1101–1105PubMedGoogle Scholar
  33. 33.
    Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4:493–500PubMedCrossRefGoogle Scholar
  34. 34.
    Jones CD, Laval-Jeantet AM, Laval-Jeantet MH, Genant HK (1987) Importance of measurement of spongious vertebral bone mineral density in the assessment of osteoporosis. Bone 8:201–206PubMedCrossRefGoogle Scholar
  35. 35.
    Nilsson M, Johnell O, Johnsson K, Redlund-Johnell I (1988) Quantitative computed tomography in measurement of vertebral trabecular bone mass. Acta Radiol 29:719–725PubMedGoogle Scholar
  36. 36.
    Kelly PJ, Nguyen T, Hopper J, Pocock N, Sambrook P, Eisman J (1993) Changes in axial bone density with age: a twin study. J Bone Miner Res 8:11–17PubMedCrossRefGoogle Scholar
  37. 37.
    Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. Lancet 341:72–75PubMedCrossRefGoogle Scholar
  38. 38.
    Burgess AE, Colborne B, Zoffmann E (1987) Vertebral trabecular bone: comparison of single and dual-energy CT measurements with chemical analysis. J Comput Assist Tomogr 11:506–515PubMedCrossRefGoogle Scholar
  39. 39.
    Cann CE (1987) QCT applications: comparison of current scanners. Radiology 162:257–261PubMedGoogle Scholar
  40. 40.
    Cann CE (1988) Quantitative CT for determination of bone mineral density: a review. Radiology 166:509–522PubMedGoogle Scholar
  41. 41.
    Tobias JH, Cook D, Chambers TJ, Dalzell N (1993) Low spinal bone mass in Asian women reflects their small skeletal size. J Bone Miner Res 8:S330Google Scholar
  42. 42.
    De Simone DP, Stevens J, Edwards J, Shary J, Gordon L, Bell NH (1989) Influence of body habitus and race on bone mineral density of the midradius, hip and spine in aging women. J Bone Miner Res 4:827–830Google Scholar
  43. 43.
    Luckey MM, Meier DE, Mandeli JP, Da Costa MC, Hubbard MC, Goldsmith SJ (1989) Radial and vertebral bone density in white and black women: evidence for racial differences in premenopausal bone homeostasis. J Clin Endocrinol Metab 69:762–770PubMedCrossRefGoogle Scholar
  44. 44.
    Harbison J, Daly L, Murphy B, Mc Coy C, Masterson J (1992) Normal bone density in Irish women: is American normative data suitable for use in Ireland? Ir J Med Sci 16:66–69CrossRefGoogle Scholar
  45. 45.
    Krall EA, Dawson-Hughes B (1993) Heritable and life-style determinants of bone mineral density. J Bone Miner Res 8:1–9PubMedCrossRefGoogle Scholar
  46. 46.
    Reid IR, Mackie M, Ibbertson HK (1986) Bone mineral content in Polynesian and white New Zealand women. Brit Med J 292:1547–1548CrossRefGoogle Scholar
  47. 47.
    Liel Y, Edwards J, Shary J (1988) Effect of race and body habitus on bone mineral density of the radius, hip, and spine in premenopausal women. J Clin Endocrinol Metab 66:1247–1250PubMedCrossRefGoogle Scholar
  48. 48.
    Mazess RB, Barden HS (1991) Bone density in premenopausal women: effect of age, dietary intake, physical activity, smoking, and birth-control pills. Am J Clin Nutr 53:132–142PubMedGoogle Scholar
  49. 49.
    Johnson JS (1976) A comparison of age estimation using discriminant function analysis with some other estimations of unknown skulls. J Anat 121:475–484PubMedGoogle Scholar
  50. 50.
    Lovejoy CO, Meindl RS, Mensforth RP, Barton TJ (1985) Multifactorial determination of skeletal age at death: a method and blind tests of its accuracy. Am J Phys Anthropol 68:1–14PubMedCrossRefGoogle Scholar
  51. 51.
    Hershkovitz I, Latimer B, Dutour O, Jellema LM, Wish-Baratz S, Rothschild C, Rothschild BM (1997) Why do we fail in aging the skull from the sagittal suture? Am J Phys Anthropol 103:393–399PubMedCrossRefGoogle Scholar
  52. 52.
    Sahni D, Jit I, Neelam S (2005) Time of closure of cranial sutures in northwest Indian adults. Forensic Sci Int 148:199–205PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Christina Schulte-Geers
    • 1
  • Martin Obert
    • 1
    • 4
    Email author
  • René L. Schilling
    • 2
  • Sebastian Harth
    • 3
  • Horst Traupe
    • 1
  • Elke R. Gizewski
    • 1
  • Marcel A. Verhoff
    • 3
  1. 1.Department of Neuroradiology, UKGMJustus-Liebig UniversityGiessenGermany
  2. 2.Institute for Mathematical StochasticsDresdenGermany
  3. 3.Department of Forensic MedicineUKGMGiessenGermany
  4. 4.Department of NeuroradiologyUniversity Clinic Giessen and Marburg (UKGM)GiessenGermany

Personalised recommendations