Advertisement

International Journal of Legal Medicine

, Volume 125, Issue 1, pp 27–32 | Cite as

DNA-based identification of forensically important Australian Sarcophagidae (Diptera)

  • Kelly A. Meiklejohn
  • James F. Wallman
  • Mark Dowton
Original Article

Abstract

The utility of the forensically important Sarcophagidae (Diptera) for time since death estimates has been severely limited, as morphological identification is difficult and thermobiological histories are inadequately documented. A molecular identification method involving the sequencing of a 658-bp ‘barcode’ fragment of the mitochondrial cytochrome oxidase subunit I (COI) gene from 85 specimens, representing 16 Australian species from varying populations, was evaluated. Nucleotide sequence divergences were calculated using the Kimura-two-parameter distance model and a neighbour-joining phylogenetic tree generated. All species were resolved as reciprocally monophyletic, except Sarcophaga dux. Intraspecific and interspecific variation ranged from 0.000% to 1.499% (SE = 0.044%) and 6.658% to 8.983% (SE = 0.653%), respectively. The COI ‘barcode’ sequence was found to be suitable for the molecular identification of the studied Australian Sarcophagidae: 96.5% of the examined specimens were assigned to the correct species. Given that the sarcophagid fauna is poorly described, it is feasible that the few incorrectly assigned specimens represent cryptic species. The results of this research will be instrumental for implementation of the Australian Sarcophagidae in forensic entomology.

Keywords

Sarcophagidae Diptera Forensic entomology COI DNA ‘barcoding’ Identification 

Notes

Acknowledgments

We would like to acknowledge Melanie Archer, Kelly George, Steve and Ruth McKillup and Lisa Mingari for providing specimens. We are grateful to the Australian Biological Resources Study (ABRS) for their financial support.

Supplementary material

414_2009_395_MOESM1_ESM.doc (156 kb)
Table 1 (DOC 159 kb)
414_2009_395_MOESM2_ESM.doc (38 kb)
Table 2 (DOC 39 kb)
414_2009_395_MOESM3_ESM.doc (30 kb)
Table 3 (DOC 31 kb)

References

  1. 1.
    Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91:51–65CrossRefPubMedGoogle Scholar
  2. 2.
    Catts EP (1992) Problems in estimating the postmortem interval in death investigations. J Agric Entomol 9:245–255Google Scholar
  3. 3.
    Catts EP, Goff ML (1992) Forensic entomology in criminal investigations. Annu Rev Entomol 37:253–272CrossRefPubMedGoogle Scholar
  4. 4.
    Wells JD, Pape T, Sperling FAH (2001) DNA-based identification and molecular systematics of forensically important Sarcophagidae (Diptera). J Forensic Sci 46:1098–1102PubMedGoogle Scholar
  5. 5.
    Pape T (1996) Catalogue of the Sarcophagidae of the world (Insecta: Diptera). Associated Publishers, GainesvilleGoogle Scholar
  6. 6.
    Shewell GE (1987) Sarcophagidae. Research Branch, Agriculture Canada, OttawaGoogle Scholar
  7. 7.
    Greenberg B (1991) Flies as forensic indicators. J Med Entomol 28:565–577PubMedGoogle Scholar
  8. 8.
    Byrd JH, Castner JL (2001) Insects of forensic importance. CRC, Boca RatonGoogle Scholar
  9. 9.
    Kamal AS (1958) Comparative study of thirteen species of sarcosaprophagous Calliphoridae and Sarcophagidae (Diptera). Ann Entomol Soc Am 51:261–271Google Scholar
  10. 10.
    Zehner R, Amendt J, Schutt S, Sauer J, Krettek R, Povolny D (2004) Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae). Int J Legal Med 118:245–247CrossRefPubMedGoogle Scholar
  11. 11.
    Wells JD, Williams DW (2007) Validation of a DNA-based method for identifying Chrysomyinae (Diptera: Calliphoridae) used in a death investigation. Int J Legal Med 121:1–8CrossRefPubMedGoogle Scholar
  12. 12.
    Nelson LA, Wallman JF, Dowton M (2007) Using COI barcodes to identify forensically and medically important blowflies. Med Vet Entomol 21:44–52CrossRefPubMedGoogle Scholar
  13. 13.
    Lopes HdS (1959) A revision of Australian Sarcophagidae (Diptera). Studia Ent 2:33–67Google Scholar
  14. 14.
    Lopes HdS (1954) Contribution to the knowledge of the Australian sarcophagid flies belonging to the genus "Tricholioproctia" Baranov, 1938 (Diptera). An Acad Bras Cienc 26:234–276Google Scholar
  15. 15.
    Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524PubMedGoogle Scholar
  16. 16.
    Platt AR, Woodhall RW, George AL Jr (2007) Improved DNA sequencing quality and efficiency using an optimised fast cycle sequencing protocol. Biotechniques 43:58–62CrossRefPubMedGoogle Scholar
  17. 17.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  18. 18.
    Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol Ecol Notes 7:355–364CrossRefPubMedGoogle Scholar
  19. 19.
    Kimura M (1980) A simple model for estimating the evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  20. 20.
    Swofford DL (2001) PAUP*-Phylogenetic Analysis Using Parsimony (* and Other Methods). Sinauer Associates, SunderlandGoogle Scholar
  21. 21.
    Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  22. 22.
    Ball SL, Hebert PDN, Burian SK, Webb JM (2005) Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. J North Am Benthol Soc 24:508–524Google Scholar
  23. 23.
    Foottit RG, Maw HEL, Von Dohlen CD, Hebert PDN (2008) Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Mol Ecol Resour 8:1189–1201CrossRefGoogle Scholar
  24. 24.
    Hajibabaei M, Janzen D, Burns J, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971CrossRefPubMedGoogle Scholar
  25. 25.
    Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321CrossRefGoogle Scholar
  26. 26.
    Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270:s96–s99CrossRefGoogle Scholar
  27. 27.
    Ward R, Zemalk T, Innes B, Last P, Hebert PDN (2005) DNA barcoding Australia's fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857CrossRefPubMedGoogle Scholar
  28. 28.
    Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci USA 103:3657–3662CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kelly A. Meiklejohn
    • 1
  • James F. Wallman
    • 1
  • Mark Dowton
    • 2
  1. 1.Institute for Conservation Biology and Environment Management, School of Biological SciencesUniversity of WollongongNSW 2522Australia
  2. 2.Centre for Medical Bioscience, School of Biological SciencesUniversity of WollongongNSW 2522Australia

Personalised recommendations