International Journal of Legal Medicine

, Volume 125, Issue 1, pp 11–20 | Cite as

Postmortem biochemistry and immunohistochemistry of chromogranin A as a stress marker with special regard to fatal hypothermia and hyperthermia

  • Chiemi Yoshida
  • Takaki IshikawaEmail author
  • Tomomi Michiue
  • Li Quan
  • Hitoshi Maeda
Original Article


Chromoganin A (CgA) is widely distributed in the secretory granules of endocrine and neuroendocrine cells and cosecreted with hormones such as catecholamines. The present study investigated postmortem serum and cerebrospinal fluid (CSF) levels of CgA in comparison with those of catecholamines, and also cellular CgA immunopositivity in the hypothalamus, adenohypophysis and adrenal medulla to assess forensic pathological significance. Serial medicolegal autopsy cases (n = 298, within 3 days postmortem) were used. Serum and CSF CgA levels were independent of the gender or age of subjects or postmortem time. The most characteristic findings were seen for fatal hypothermia (cold exposure), hyperthermia (heat stroke) and intoxication. Serum CgA levels were lower for hypothermia and intoxication than for other causes of death (p < 0.05), while CSF CgA levels were higher for hypothermia (p < 0.0001). A negative correlation was detected between serum and CSF CgA levels for hypothermia (R = 0.552, p < 0.05). Correlations between serum levels of CgA and catecholamines (adrenaline, noradrenaline and dopamine) were evident for hyperthermia (R = 0.632–0.757, p < 0.05 to <0.01), but there was no significant correlation between CgA and catecholamine levels in CSF. Cellular CgA immunopositivity in the hypothalamus, adenohypophysis and adrenal medulla varied extensively among cases in each group. However, CgA immunopositivity in hypothalamus neurons was lower for hypothermia than other causes of death including hyperthermia and intoxication. These observations suggest characterictic neuroendocrinal activation in fatal cases of hypo- and hyperthermia and also intoxication. CgA may be a useful biochemical and immunohistochemical marker for investigating these causes of death.


Forensic pathology Chromogranin A Catecholamine Biochemistry Immunohistochemistry Hypothermia Hyperthermia 


  1. 1.
    Goldstein DS, Kopin IJ (2008) Adrenomedullary, adrenocortical, and sympathoneural responses to stressors: a meta-analysis. Endocr Regul 42:111–119PubMedGoogle Scholar
  2. 2.
    Zhu BL, Ishikawa T, Michiue T et al (2007) Postmortem serum catecholamine levels in relation to the cause of death. Forensic Sci Int 173:122–129CrossRefPubMedGoogle Scholar
  3. 3.
    Wilke N, Janssen H, Fahrenhorst C et al (2007) Postmortem determination of concentrations of stress hormones in various body fluids—is there a dependency between adrenaline/noradrenaline quotient, cause of death and agony time? Int J Legal Med 121:385–394CrossRefPubMedGoogle Scholar
  4. 4.
    Yoshida C, Ishikawa T, Michiue T et al (2009) Immunohistochemical distribution of chromogranin A in medicolegal autopsy materials. Leg Med 11:231–233CrossRefGoogle Scholar
  5. 5.
    Cryer PE, Wortsman J, Shah SD et al (1991) Plasma chromogranin A as a marker of sympathochromaffin activity in humans. Am J Physiol 260:E243–E246PubMedGoogle Scholar
  6. 6.
    Helle KB, Corti A, Metz-Boutigue MH et al (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 64:2863–2886CrossRefPubMedGoogle Scholar
  7. 7.
    Blaschko H, Comline RS, Schneider FH et al (1967) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215:58–59CrossRefPubMedGoogle Scholar
  8. 8.
    Toda M, Makino H, Nagasawa S et al (2006) Change in salivary physiological stress markers by spa bathing. Biomed Res 27:11–14CrossRefPubMedGoogle Scholar
  9. 9.
    Helle KB (1973) Biochemical studies of the chromaffin granule. 3. Redistribution of lipid phosphate, dopamine-beta-hydroxylase and chromogranin A after freezing and thawing of the isolated granule membranes. Biochim Biophys Acta 318:167–180CrossRefPubMedGoogle Scholar
  10. 10.
    Helle KB (1971) Biochemical studies of the chromaffin granule. II. Properties of membrane-bound and water-soluble forms of chromogranin A and dopamine- hydroxylase activity. Biochim Biophys Acta 245:94–104CrossRefPubMedGoogle Scholar
  11. 11.
    Lindberg I (1991) The new eukaryotic precursor processing proteinases. Mol Endocrinol 5:1361–1365CrossRefPubMedGoogle Scholar
  12. 12.
    Ceconi C, Ferrari R, Bachetti T et al (2002) Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality. Eur Heart J 23:967–974CrossRefPubMedGoogle Scholar
  13. 13.
    O'Connor DT, Bernstein KN (1984) Radioimmunoassay of chromogranin A in plasma as a measure of exocytotic sympathoadrenal activity in normal subjects and patients with pheochromocytoma. N Engl J Med 311:764–770CrossRefPubMedGoogle Scholar
  14. 14.
    Carmichael SW, Stoddard SL, O'Connor DT et al (1990) The secretion of catecholamines, chromogranin A and neuropeptide Y from the adrenal medulla of the cat via the adrenolumbar vein and thoracic duct: different anatomic routes based on size. Neuroscience 34:433–440CrossRefPubMedGoogle Scholar
  15. 15.
    Hsiao RJ, Neumann HP, Parmer RJ et al (1990) Chromogranin A in familial pheochromocytoma: diagnostic screening value, prediction of tumor mass, and post-resection kinetics indicating two-compartment distribution. Am J Med 88:607–613CrossRefPubMedGoogle Scholar
  16. 16.
    Prengel AW, Lindner KH, Ensinger H et al (1992) Plasma catecholamine concentrations after successful resuscitation in patients. Crit Care Med 20:609–614CrossRefPubMedGoogle Scholar
  17. 17.
    Ishikawa T, Quan L, Li DR et al (2008) Postmortem biochemistry and immunohistochemistry of adrenocorticotropic hormone with special regard to fatal hypothermia. Forensic Sci Int 179:147–151CrossRefPubMedGoogle Scholar
  18. 18.
    Ishikawa T, Miyaishi S, Tachibana T et al (2004) Fatal hypothermia related vacuolation of hormone-producing cells in the anterior pituitary. Leg Med 6:157–163CrossRefGoogle Scholar
  19. 19.
    Bunai Y, Akaza K, Jiang WX et al (2008) Fatal hyperthermia associated with excited delirium during an arrest. Leg Med 10:306–309CrossRefGoogle Scholar
  20. 20.
    Kleemann WJ, Schlaud M, Poets CF (1996) Hyperthermia in sudden infant death. Int J Legal Med 109:139–142CrossRefPubMedGoogle Scholar
  21. 21.
    Ishikawa T, Hamel M, Zhu BL et al (2008) Comparative evaluation of postmortem serum concentrations of neopterin and C-reactive protein. Forensic Sci Int 179:135–143CrossRefPubMedGoogle Scholar
  22. 22.
    Nishikawa Y, Li J, Futai Y et al (1998) Regio-specific radioimmunoassay for human chromogranin A. Biomed Res 19:245–251Google Scholar
  23. 23.
    Konecki DS, Benedum UM, Gerdes HH (1987) The primary structure of human chromogranin A and pancreastatin. J Biol Chem 262:17026–17030PubMedGoogle Scholar
  24. 24.
    Foti A, Kimura S, DeQuattro V et al (1987) Liquid-chromatographic measurement of catecholamines and metabolites in plasma and urine. Clin Chem 33:2209–2213PubMedGoogle Scholar
  25. 25.
    Ishikawa T, Zhu BL, Miyaishi S et al (2007) Increase in clusterin-containing follicles in the adenohypophysis of drug abusers. Int J Legal Med 121:395–402CrossRefPubMedGoogle Scholar
  26. 26.
    Ishikawa T, Zhu BL, Li DR et al (2006) Postmortem stability of pituitary hormones in the human adenohypophysis. Leg Med 8:34–38CrossRefGoogle Scholar
  27. 27.
    Lloyd RV, Cano M, Rosa P, Hille A et al (1988) Distribution of chromogranin A and secretogranin I (chromogranin B) in neuroendocrine cells and tumors. Am J Pathol 130:296–304PubMedGoogle Scholar
  28. 28.
    Ishikawa T, Zhu BL, Li DR et al (2007) Immunohistochemical investigation of ubiquitin and myoglobin in the kidney in medicolegal autopsy cases. Forensic Sci Int 171:136–141CrossRefPubMedGoogle Scholar
  29. 29.
    Zhu BL, Ishikawa T, Michiue T et al (2007) Postmortem cardiac troponin I and creatine kinase MB levels in the blood and pericardial fluid as markers of myocardial damage in medicolegal autopsy. Leg Med 9:241–250CrossRefGoogle Scholar
  30. 30.
    Børglum T, Rehfeld JF, Drivsholm LB (2007) Processing-independent quantitation of chromogranin a in plasma from patients with neuroendocrine tumors and small-cell lung carcinomas. Clin Chem 53:438–446CrossRefPubMedGoogle Scholar
  31. 31.
    Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49:497–528CrossRefPubMedGoogle Scholar
  32. 32.
    Kortelainen ML, Huttunen P, Lapinlampi T (1990) Urinary catecholamines in hyperthermia-related deaths. Forensic Sci Int 48:103–110CrossRefPubMedGoogle Scholar
  33. 33.
    Maeda H, Zhu BL, Bessho Y et al (2008) Postmortem serum nitrogen compounds and C-reactive protein levels with special regard to investigation of fatal hyperthermia. Forensic Sci Med Pathol 4:175–180CrossRefPubMedGoogle Scholar
  34. 34.
    Zhu BL, Ishikawa T, Michiue T et al (2007) Postmortem pericardial natriuretic peptides as markers of cardiac function in medico-legal autopsies. Int J Legal Med 121:28–35CrossRefPubMedGoogle Scholar
  35. 35.
    Michiue T, Ishikawa T, Quan L et al (2008) Single-stranded DNA as an immunohistochemical marker of neuronal damage in human brain: an analysis of autopsy material with regard to the cause of death. Forensic Sci Int 178:185–191CrossRefPubMedGoogle Scholar
  36. 36.
    Sadler DW, Pounder DJ (1995) Urinary catecholamines as markers of hypothermia. Forensic Sci Int 76:227–230CrossRefPubMedGoogle Scholar
  37. 37.
    Broessner G, Beer R, Franz G et al (2005) Case report: severe heat stroke with multiple organ dysfunction—a novel intravascular treatment approach. Crit Care 9:R498–R501CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang D, Lavaux T, Sapin R et al (2009) Serum concentration of chromogranin A at admission: an early biomarker of severity in critically ill patients. Ann Med 41:38–44CrossRefPubMedGoogle Scholar
  39. 39.
    Bhatnagar S, Dallman M (1998) Neuroanatomical basis for facilitation of hypothalamic–pituitary–adrenal responses to a novel stressor after chronic stress. Neuroscience 84:1025–1039CrossRefPubMedGoogle Scholar
  40. 40.
    Pacák K (2000) Stressor-specific activation of the hypothalamic–pituitary–adrenocortical axis. Physiol Res 49:S11–S17PubMedGoogle Scholar
  41. 41.
    Ulrich G, Ciesielski-Treska J, Taupenot L et al (2002) Chromogranin A-activated microglial cells induce neuronal apoptosis. Ann N Y Acad Sci 971:560–562CrossRefPubMedGoogle Scholar
  42. 42.
    Schmidt H, Müller-Werdan U, Hoffmann T et al (2005) Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 33:1994–2002CrossRefPubMedGoogle Scholar
  43. 43.
    Cao WH, Fan W, Morrison SF (2004) Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience 126:229–240CrossRefPubMedGoogle Scholar
  44. 44.
    Kato A, Kammen-Jolly K, Fischer-Colbie R et al (2000) Co-distribution patterns of chromogranin B-like immunoreactivity with chromogranin A and secretoneurin within the human brainstem. Brain Res 852:444–452CrossRefPubMedGoogle Scholar
  45. 45.
    Arita K, Uozumi T, Oki S (1993) The function of the hypothalamo-pituitary axis in brain dead patients. Acta Neurochir 123:64–75CrossRefGoogle Scholar
  46. 46.
    Sugimoto T, Sakano T, Kinoshita Y (1992) Morphological and functional alterations of the hypothalamic–pituitary system in brain death with long-term bodily living. Acta Neurochir 115:31–36CrossRefGoogle Scholar
  47. 47.
    Ishikawa T, Michiue T, Quan L, Zhao D, Komatsu A, Bessho Y, Maeda H (2009) Morphological and functional alterations in the adenohypophysis in cases of brain death. Leg Med 11:S234–S237CrossRefGoogle Scholar
  48. 48.
    Gavrilovic L, Dronjak S (2005) Activation of rat pituitary–adrenocortical and sympatho-adrenomedullary system in response to different stressors. Neuro Endocrinol Lett 26:515–520PubMedGoogle Scholar
  49. 49.
    Quan L, Ishikawa T, Michiue T et al (2005) Quantitative analysis of ubiquitin-immunoreactivity in the midbrain periaqueductal gray matter with regard to the causes of death in forensic autopsy. Leg Med 7:151–156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Chiemi Yoshida
    • 1
  • Takaki Ishikawa
    • 1
    Email author
  • Tomomi Michiue
    • 1
  • Li Quan
    • 1
  • Hitoshi Maeda
    • 1
  1. 1.Department of Legal MedicineOsaka City University Medical SchoolOsakaJapan

Personalised recommendations