Advertisement

International Journal of Legal Medicine

, Volume 122, Issue 5, pp 429–434 | Cite as

Was a child poisoned by ethanol? Discrimination between ante-mortem consumption and post-mortem formation

  • Brice M. R. Appenzeller
  • Marc Schuman
  • Robert Wennig
Case Report

Abstract

The presence of ethanol in human specimens collected during autopsies is generally considered as an indication of recent ante-mortem alcohol consumption. The interpretation of the results may however be impaired by post-mortem formation of ethanol when microorganisms capable of fermentation of glucose to ethanol are present. Since the distribution in the different fluids and tissues remains contentious to conclude on the origin of the detected ethanol, the determination of specific metabolites of ethanol such as ethyl glucuronide (EtG) may be performed to discriminate between exogenous (ante-mortem) and endogenous (post-mortem). Toxicological analysis of specimens from the autopsy of a child aged 14 months displayed a high concentration of ethanol in blood and tissues. In order to discriminate between ante-mortem alcohol administration and post-mortem formation, the presence of microorganisms capable of ethanol production was checked by fermentation tests and the liver was tested for the presence of EtG and compared with a positive control. Fermentation tests displayed in the blood of the deceased the presence of the bacterial strain Lactococcus garvieae capable of producing ethanol from glucose. The absence of EtG in the liver of the deceased compared to the high level (19.56 μg/g) detected in the positive control’s liver is a further indication that the ethanol detected in the body of the deceased is of post-mortem origin.

Keywords

Ethanol Ethyl glucuronide Post-mortem Ante-mortem Fermentation 

Notes

Acknowledgements

The authors are grateful to M. Babak Ahani for microorganism identification and M. Gilbert Asselborn for ethanol analysis in tissues.

References

  1. 1.
    Kugelberg FC, Jones AW (2007) Interpreting results of ethanol analysis in postmortem specimens: a review of the literature. Forensic Sci Int 165:10–29CrossRefPubMedGoogle Scholar
  2. 2.
    Lewis RJ, Johnson RD, Angier MK, Vu NT (2004) Ethanol formation in unadulterated postmortem tissues. Forensic Sci Int 146:17–24CrossRefPubMedGoogle Scholar
  3. 3.
    Clark MA, Jones JW (1982) Studies on putrefactive ethanol production. I. Lack of spontaneous ethanol production in intact human bodies. J Forensic Sci 27:366–371PubMedGoogle Scholar
  4. 4.
    Geertinger P, Bodenhoff J, Helweg-Larsen K, Lund A (1982) Endogenous alcohol production by intestinal fermentation in sudden infant death. Int J Legal Med 89:167–172Google Scholar
  5. 5.
    Gilliland MGF, Bost RO (1993) Alcohol in decomposed bodies: postmortem synthesis and distribution. J Forensic Sci 38:1266–1274PubMedGoogle Scholar
  6. 6.
    O'Neal CL, Poklis A (1996) Postmortem production of ethanol and factors that influence interpretation: a critical review. Am J Forensic Med Pathol 17:8–20CrossRefPubMedGoogle Scholar
  7. 7.
    Blackmore DJ (1968) The bacterial production of ethyl alcohol. J Forensic Sci Soc 8:73–78CrossRefPubMedGoogle Scholar
  8. 8.
    Mayes R, Levine B, Smith ML, Wagner GN, Froede R (1992) Toxicologic findings in the USS Iowa disaster. J Forensic Sci 37:1352–1357PubMedGoogle Scholar
  9. 9.
    Zumwalt RE, Bost RO, Sunshine I (1982) Evaluation of ethanol concentrations in decomposed bodies. J Forensic Sci 27:549–554PubMedGoogle Scholar
  10. 10.
    Kuhlman JJ, Levine B, Smith ML, Hordinsky JR (1991) Toxicological findings in Federal Aviation Administration general aviation accidents. J Forensic Sci 36:1121–1128PubMedGoogle Scholar
  11. 11.
    Canfield DV, Kupied T, Huffine E (1993) Postmortem alcohol production in fatal aircraft accidents. J Forensic Sci 38:914–917PubMedGoogle Scholar
  12. 12.
    Yajima D, Motani H, Kamei K, Sato Y, Hayakawa M, Iwase H (2006) Ethanol production by Candida albicans in postmortem human blood samples: effects of blood glucose level and dilution. Forensic Sci Int 164:116–121CrossRefPubMedGoogle Scholar
  13. 13.
    Hoiseth G, Kristoffersen L, Larssen B, Arnestad M, Hermansen NO, Morland J (2008) In vitro formation of ethanol in autopsy samples containing fluoride ions. Int J Legal Med 122:63–66CrossRefPubMedGoogle Scholar
  14. 14.
    Hansson P, Varga A, Krantz P, Alling C (2001) Phosphatidylethanol in post-mortem blood as a marker of previous heavy drinking. Int J Legal Med 115:158–161CrossRefPubMedGoogle Scholar
  15. 15.
    Refaai MA, Nguyen PN, Steffensen TS, Evans RJ, Cluette-Brown JE, Laposata M (2002) Liver and adipose tissue fatty acid ethyl esters obtained at autopsy are postmortem markers for premortem ethanol intake. Clin Chem 48:77–83PubMedGoogle Scholar
  16. 16.
    Wurst FM, Schüttler R, Kempter C, Seidl S, Gilg T, Jachau K, Alt A (1999) Can ethyl glucuronide be determined in post-mortem body fluids and tissues? Alcohol Alcohol 34:262–263PubMedGoogle Scholar
  17. 17.
    Schmitt G, Droenner P, Skopp G, Aderjan R (1997) Ethyl glucuronide concentration in serum of human volunteers, teetotalers, and suspected drinking drivers. J Forensic Sci 42:1099–1102PubMedGoogle Scholar
  18. 18.
    Dahl H, Stephanson N, Beck O, Helander A (2002) Comparison of urinary excretion characteristics of ethanol and ethyl glucuronide. J Anal Toxicol 26:201–204PubMedGoogle Scholar
  19. 19.
    Appenzeller BMR, Agirman R, Neuberg P, Yegles M, Wennig R (2007) Segmental determination of ethyl glucuronide in hair: a pilot study. Forensic Sci Int 173:87–92CrossRefPubMedGoogle Scholar
  20. 20.
    Schloegl H, Rost T, Schmidt W, Wurst FM, Weinman W (2006) Distribution of ethyl glucuronide in rib bone narrow, other tissues and body liquids as proof of alcohol consumption before death. Forensic Sci Int 156:213–218CrossRefPubMedGoogle Scholar
  21. 21.
    Hoiseth G, Karinen R, Christophersen AS, Olsen L, Normann PT, Morland J (2007) A study of ethyl glucuronide in post-mortem blood as a marker of ante-mortem ingestion of alcohol. Forensic Sci Int 165:41–45CrossRefPubMedGoogle Scholar
  22. 22.
    Schloegl H, Dresen S, Spaczynski K, Stoertzel M, Wurst FM, Weinman W (2006) Stability of ethyl glucuronide in urine, post-mortem tissue and blood samples. Int J Legal Med 120:83–88CrossRefPubMedGoogle Scholar
  23. 23.
    Yegles M, Labarthe A, Auwärter V, Hartwig S, Vater H, Wennig R, Pragst F (2004) Comparison of ethyl glucuronide and fatty acid ethyl ester concentrations in hair of alcoholics, social drinkers and teetotallers. Forensic Sci Int 145:167–173CrossRefPubMedGoogle Scholar
  24. 24.
    Levine B, Smith ML, Smialek JE, Caplan YH (1993) Interpretation of low postmortem concentrations of ethanol. J Forensic Sci 38:663–667PubMedGoogle Scholar
  25. 25.
    Collison IB (2005) Elevated postmortem ethanol concentrations in an insulin-dependent diabetic. J Anal Toxicol 29:762–764PubMedGoogle Scholar
  26. 26.
    Pélissier-Alicot A-L, Fornaris M, Bartoli C, Percecchi-Marti M-D, Sanvoisin A, Leonetti G (2005) An unusual case of post-mortem redistribution of ethanol. Forensic Sci Int 150:81–83CrossRefPubMedGoogle Scholar
  27. 27.
    Pélissier-Alicot A-L, Gaulier J-M, Champsaur P, Marquet P (2003) Mechanisms underlying postmortem redistribution of drugs: a review. J Anal Toxicol 27:533–544PubMedGoogle Scholar
  28. 28.
    Backer RC, Pisano RV, Sopher IM (1980) The comparison of alcohol concentrations in postmortem fluids and tissues. J Forensic Sci 25:327–331PubMedGoogle Scholar
  29. 29.
    Petkovic SM, Simic MA, Vujic DN (2005) Postmortem production of ethanol in different tissues under controlled experimental conditions. J Forensic Sci 50:204–208CrossRefPubMedGoogle Scholar
  30. 30.
    Eldar A, Goria M, Ghittino C, Zlotkin A, Bercovier H (1999) Biodiversity of Lactococcus garvieae strains isolated from fish in Europe, Asia, and Australia. Appl Environ Microbiol 65:1005–1008PubMedGoogle Scholar
  31. 31.
    Fefer JJ, Ratzan KR, Sharp SE, Saiz E (1998) Lactococcus garvieae endocarditis: report of a case and review of the literature. Diagn Microbiol Infect Dis 32:127–130CrossRefPubMedGoogle Scholar
  32. 32.
    Fihman V, Raskine L, Barrou Z, Kiffel C, Riahi J, Berçot B, Sanson-Le pors M-J (2006) Lactococcus garvieae endocarditis: identification by 16S rRNA and sodA sequence analysis. J Infection 52:e3–e6CrossRefGoogle Scholar
  33. 33.
    Vinh DC, Nichol KA, Rand F, Embil JM (2006) Native-valve bacterial endocarditis caused by Lactococcus garvieae. Diagn Microbiol Infect Dis 56:91–94CrossRefPubMedGoogle Scholar
  34. 34.
    Foti RS, Fisher MB (2005) Assessment of UDP-glucuronosyltransferase catalyzed formation of ethyl glucuronide in human liver microsomes and recombinant UGTs. Forensic Sci Int 153:109–116CrossRefPubMedGoogle Scholar
  35. 35.
    Baeck GW, Kim JH, Gomez DK, Park SC (2006) Isolation and characterization of Streptocossus sp. from diseased flounder (Paralichthys olivaceus) in Jeju Island. J Vet Sci 7:53–58PubMedGoogle Scholar
  36. 36.
    Evans JJ, Pasnik DJ, Klesius PH, Al-Ablani S (2006) First report of Streptococcus agalactiae and Lactococcus garvieae from a wild bottlenose dolphin (Tursiops truncatus). J Wildlife Dis 42:561–569Google Scholar
  37. 37.
    Fortina MG, Ricci G, Foschino R, Picozzi C, Dolci P, Zeppa G, Cocolin G, Manachini PL (2007) Phenotypic typing, technological properties and safety aspects of Lactococcus garvieae strains from dairy environments. J Appl Microbiol 103:445–453CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Brice M. R. Appenzeller
    • 1
  • Marc Schuman
    • 1
  • Robert Wennig
    • 1
  1. 1.Laboratoire de Toxicologie, Centre de Recherche Public—Santé/Laboratoire National de SantéUniversité du LuxembourgLuxembourgLuxembourg

Personalised recommendations