International Journal of Legal Medicine

, Volume 121, Issue 6, pp 493–499 | Cite as

First successful assay of Y-SNP typing by SNaPshot minisequencing on ancient DNA

  • C. Bouakaze
  • C. Keyser
  • S. Amory
  • E. Crubézy
  • B. Ludes
Technical Note

Abstract

In the present study, a set of 13 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) selected for the identification of the most frequent Asian Y-haplogroups was included in an allele-specific primer extension assay. Single nucleotide polymorphism (SNP) genotyping was accomplished by co-amplification of these 13 DNA fragments within 2 multiplex PCRs followed by detection with 1 minisequencing reaction using the SNaPshot™ Multiplex kit and analysis of extension products by capillary electrophoresis. First developed on modern samples, the assay was optimized for the analysis of 11 ancient DNA (aDNA) samples from the Krasnoyarsk region (southern Siberia) that were dated from 5,500–1,800 years before present (YBP). SNP typing was successful for most of them, which were all assigned to Y-haplogroup R1a1 except one. These results show that SNPs are well-suited for the analysis of aged and degraded DNA samples. Moreover, we found that the SNaPshot minisequencing methodology is a convenient, robust, and efficient method for SNP typing. To our knowledge, this study reports the first successful investigation of Y-SNPs on aDNA samples. The potential use of Y-SNPs in both evolutionary and forensic fields is also discussed.

Keywords

Y-chromosome SNPs SNaPshot Single base extension Ancient DNA Southern Siberia Y-haplogroup R1a1 

Supplementary material

414_2007_177_MOESM1_ESM.doc (56 kb)
Fig. S1Electropherograms obtained from the typing of 13 Y-SNPs with a modern European sample. These plots, obtained using the Genotyper v.3.7 software, show the RFUs vs measured size (nt) of SBE products relative to GS120 LIZ internal size standard. Various PCR products purification methods were tested to eliminate the background signals between 25 and 32 nt (black rectangle): a treatment with SAP and ExoI (GE Healthcare), b UltraClean PCR Clean-up Kit (MoBio Laboratories), and c Genopure ds™ (Brucker Daltonik). Arrows indicate artifact pull-up peaks (DOC 56 kb)
414_2007_177_MOESM2_ESM.doc (46 kb)
Table S1PCR primers for the 2 multiplex PCR amplifications of the 13 Y-SNPs used in this study (DOC 47 kb)
414_2007_177_MOESM3_ESM.doc (47 kb)
Table S2Minisequencing primers for the detection of the 13 Y-SNPs used in this study (DOC 48 kb)
414_2007_177_MOESM4_ESM.doc (70 kb)
Table S3Quantitation results of aDNA extracts (DOC 71 kb)

References

  1. 1.
    Jobling MA, Tyler-Smith C (2003) The human Y chromosome: an evolutionary marker comes of age. Nat Rev Genet 4:598–612PubMedCrossRefGoogle Scholar
  2. 2.
    Berger B, Lindinger A, Niederstatter H, Grubwieser P, Parson W (2005) Y-STR typing of an Austrian population sample using a 17-loci multiplex PCR assay. Int J Legal Med 119:241–246PubMedCrossRefGoogle Scholar
  3. 3.
    Gill P, Brenner C, Brinkmann B et al (2001) DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y-chromosome STRs. Int J Legal Med 114:305–309PubMedCrossRefGoogle Scholar
  4. 4.
    Gusmao L, Butler JM, Carracedo A et al (2006) DNA Commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis. Forensic Sci Int 157:187–197PubMedCrossRefGoogle Scholar
  5. 5.
    Jobling MA, Pandya A, Tyler-Smith C (1997) The Y chromosome in forensic analysis and paternity testing. Int J Legal Med 110:118–124PubMedCrossRefGoogle Scholar
  6. 6.
    Jobling MA (2001) Y-chromosomal SNP haplotype diversity in forensic analysis. Forensic Sci Int 118:158–162PubMedCrossRefGoogle Scholar
  7. 7.
    Lessig R, Zoledziewska M, Fahr K, Edelmann J, Kostrzewa M, Dobosz T, Kleemann WJ (2005) Y-SNP-genotyping—a new approach in forensic analysis. Forensic Sci Int 154:128–136PubMedCrossRefGoogle Scholar
  8. 8.
    Grubwieser P, Muhlmann R, Berger B, Niederstatter H, Pavlic M, Parson W (2006) A new “miniSTR-multiplex” displaying reduced amplicon lengths for the analysis of degraded DNA. Int J Legal Med 120:115–120PubMedCrossRefGoogle Scholar
  9. 9.
    Prinz M, Carracedo A, Mayr WR et al (2007) DNA Commission of the International Society for Forensic Genetics (ISFG): recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci Int 1:3–12CrossRefGoogle Scholar
  10. 10.
    Wiegand P, Kleiber M (2001) Less is more—length reduction of STR amplicons using redesigned primers. Int J Legal Med 114:285–287PubMedCrossRefGoogle Scholar
  11. 11.
    Biesecker LG, Bailey-Wilson JE, Ballantyne J et al (2005) Epidemiology. DNA identifications after the 9/11 World Trade Center attack. Science 310:1122–1123PubMedCrossRefGoogle Scholar
  12. 12.
    Budowle B (2004) SNP typing strategies. Forensic Sci Int 146(Suppl):S139–S142Google Scholar
  13. 13.
    Sobrino B, Brion M, Carracedo A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194PubMedCrossRefGoogle Scholar
  14. 14.
    Brandstätter A, Parsons TJ, Parson W (2003) Rapid screening of mtDNA coding region SNPs for the identification of west European Caucasian haplogroups. Int J Legal Med 117:291–298PubMedCrossRefGoogle Scholar
  15. 15.
    Brandstätter A, Salas A, Niederstatter H, Gassner C, Carracedo A, Parson W (2006) Dissection of mitochondrial superhaplogroup H using coding region SNPs. Electrophoresis 27:2541–2550PubMedCrossRefGoogle Scholar
  16. 16.
    Grignani P, Peloso G, Achilli A et al (2006) Subtyping mtDNA haplogroup H by SNaPshot minisequencing and its application in forensic individual identification. Int J Legal Med 120:151–156PubMedCrossRefGoogle Scholar
  17. 17.
    Niederstatter H, Coble MD, Grubwieser P, Parsons TJ, Parson W (2006) Characterization of mtDNA SNP typing and mixture ratio assessment with simultaneous real-time PCR quantification of both allelic states. Int J Legal Med 120:18–23PubMedCrossRefGoogle Scholar
  18. 18.
    Dixon LA, Murray CM, Archer EJ, Dobbins AE, Koumi P, Gill P (2005) Validation of a 21-locus autosomal SNP multiplex for forensic identification purposes. Forensic Sci Int 154:62–77PubMedCrossRefGoogle Scholar
  19. 19.
    Sanchez JJ, Phillips C, Borsting C et al (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27:1713–1724PubMedCrossRefGoogle Scholar
  20. 20.
    Brion M, Sobrino B, Blanco-Verea A, Lareu MV, Carracedo A (2005) Hierarchical analysis of 30 Y-chromosome SNPs in European populations. Int J Legal Med 119:10–15PubMedCrossRefGoogle Scholar
  21. 21.
    Brion M, Sanchez JJ, Balogh K et al (2005) Introduction of a single nucleotide polymorphism-based “major Y-chromosome haplogroup typing kit” suitable for predicting the geographical origin of male lineages. Electrophoresis 26:4411–4420PubMedCrossRefGoogle Scholar
  22. 22.
    Onofri V, Alessandrini F, Turchi C, Pesaresi M, Buscemi L, Tagliabracci A (2006) Development of multiplex PCRs for evolutionary and forensic applications of 37 human Y chromosome SNPs. Forensic Sci Int 157:23–35PubMedCrossRefGoogle Scholar
  23. 23.
    Sanchez JJ, Borsting C, Hallenberg C, Buchard A, Hernandez A, Morling N (2003) Multiplex PCR and minisequencing of SNPs—a model with 35 Y chromosome SNPs. Forensic Sci Int 137:74–84PubMedCrossRefGoogle Scholar
  24. 24.
    Sanchez JJ, Borsting C, Morling N (2005) Typing of Y chromosome SNPs with multiplex PCR methods. Methods Mol Biol 297:209–228PubMedGoogle Scholar
  25. 25.
    Doi Y, Yamamoto Y, Inagaki S, Shigeta Y, Miyaishi S, Ishizu H (2004) A new method for ABO genotyping using a multiplex single-base primer extension reaction and its application to forensic casework samples. Leg Med (Tokyo) 6:213–223Google Scholar
  26. 26.
    Ferri G, Bini C, Ceccardi S, Ingravallo F, Lugaresi F, Pelotti S (2006) Minisequencing-based genotyping of Duffy and ABO blood groups for forensic purposes. J Forensic Sci 51:357–360PubMedCrossRefGoogle Scholar
  27. 27.
    Grimes EA, Noake PJ, Dixon L, Urquhart A (2001) Sequence polymorphism in the human melanocortin 1 receptor gene as an indicator of the red hair phenotype. Forensic Sci Int 122:124–129PubMedCrossRefGoogle Scholar
  28. 28.
    Derenko M, Malyarchuk B, Denisova GA et al (2006) Contrasting patterns of Y-chromosome variation in South Siberian populations from Baikal and Altai-Sayan regions. Hum Genet 118:591–604PubMedCrossRefGoogle Scholar
  29. 29.
    Karafet TM, Osipova LP, Gubina MA, Posukh OL, Zegura SL, Hammer MF (2002) High levels of Y-chromosome differentiation among native Siberian populations and the genetic signature of a boreal hunter–gatherer way of life. Hum Biol 74:761–789PubMedCrossRefGoogle Scholar
  30. 30.
    Lell JT, Sukernik RI, Starikovskaya YB et al (2002) The dual origin and Siberian affinities of Native American Y chromosomes. Am J Hum Genet 70:192–206PubMedCrossRefGoogle Scholar
  31. 31.
    Underhill PA, Passarino G, Lin AA et al (2001) The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Ann Hum Genet 65:43–62PubMedCrossRefGoogle Scholar
  32. 32.
    Zegura SL, Karafet TM, Zhivotovsky LA, Hammer MF (2004) High-resolution SNPs and microsatellite haplotypes point to a single, recent entry of Native American Y chromosomes into the Americas. Mol Biol Evol 21:164–175PubMedCrossRefGoogle Scholar
  33. 33.
    Y Chromosome Consortium (2002) A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Res 12:339–348CrossRefGoogle Scholar
  34. 34.
    Alessandrini F, Turchi C, Onofri V, Buscemi L, Pesaresi M, Tagliabracci A (2005) Multiplex PCR development of Y-chromosomal biallelic polymorphisms for forensic application. J Forensic Sci 50:519–525PubMedCrossRefGoogle Scholar
  35. 35.
    Zerjal T, Dashnyam B, Pandya A et al (1997) Genetic relationships of Asians and Northern Europeans, revealed by Y-chromosomal DNA analysis. Am J Hum Genet 60:1174–1183PubMedGoogle Scholar
  36. 36.
    Vallone PM, Butler JM (2004) Y-SNP typing of U.S. African American and Caucasian samples using allele-specific hybridization and primer extension. J Forensic Sci 49:723–732PubMedCrossRefGoogle Scholar
  37. 37.
    Lindblad-Toh K, Winchester E, Daly MJ et al (2000) Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat Genet 24:381–386PubMedCrossRefGoogle Scholar
  38. 38.
    Keyser-Tracqui C, Ludes B (2005) Methods for the study of ancient DNA. Methods Mol Biol 297:253–264PubMedGoogle Scholar
  39. 39.
    Keyser-Tracqui C, Crubezy E, Ludes B (2003) Nuclear and mitochondrial DNA analysis of a 2,000-year-old necropolis in the Egyin Gol Valley of Mongolia. Am J Hum Genet 73:247–260PubMedCrossRefGoogle Scholar
  40. 40.
    Sanchez JJ, Brion M, Parson W et al (2004) Duplications of the Y-chromosome specific loci P25 and 92R7 and forensic implications. Forensic Sci Int 140:241–250PubMedCrossRefGoogle Scholar
  41. 41.
    Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715PubMedCrossRefGoogle Scholar
  42. 42.
    Budowle B, Bieber FR, Eisenberg AJ (2005) Forensic aspects of mass disasters: strategic considerations for DNA-based human identification. Leg Med (Tokyo) 7:230–243Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • C. Bouakaze
    • 1
  • C. Keyser
    • 1
  • S. Amory
    • 1
    • 2
  • E. Crubézy
    • 2
  • B. Ludes
    • 1
    • 2
  1. 1.Institute of Legal Medicine, EA3428StrasbourgFrance
  2. 2.Anthropobiology LaboratoryCNRS, FRE2960ToulouseFrance

Personalised recommendations