International Journal of Legal Medicine

, Volume 121, Issue 4, pp 297–301

Identification and sequence analysis of discordant phenotypes between AmpFlSTR SGM Plus™ and PowerPlex® 16

  • Nancy Vanderheyden
  • Ahnly Mai
  • Anja Gilissen
  • Jean-Jacques Cassiman
  • Ronny Decorte
Original Article

Abstract

During duplicate analysis of buccal swabs from 1,377 individuals with 2 commercial short tandem repeat (STR) kits, we observed 8 discordant phenotypes with SGM Plus™ (SGM, second generation multiplex) for the STRs THO1 (2), vWA (4) and D18S51 (2), and 1 discrepancy with PowerPlex® 16 for D18S51. One individual even showed two discrepancies (vWA and THO1) for SGM Plus™. In each case, the difference observed was due to the non-amplification or allele dropout of the second allele in a heterozygous genotype. Sequence analysis revealed each time the presence of a mutation that probably coincided with the primer-binding site. Primer-binding site mutations for vWA and D18S51 have been reported previously, while the mutation for THO1 (C-to-T substitution at position 1286 of GenBank sequence D00269) is reported here for the first time. While the frequency of these silent alleles remains low (0.58% in our study), it is suggested that appropriate measures should be taken for database comparisons and that allelic dropout should be further investigated by sequence analysis and be reported to the forensic community.

Keywords

SGM Plus™ PowerPlex® 16 Allele dropout Silent allele Primer-binding site mutation 

Supplementary material

414_2007_167_MOESM1_ESM.doc (28 kb)
Table S1Primers used for PCR and cloning (DOC 29 kb)
414_2007_167_MOESM2_ESM.pdf (63 kb)
Figure S1a GeneMapper ID analysis of AmpFlSTR® SGM Plus™ result for Individual 4 with 2 silent alleles (vWA and THO1) b GeneMapper ID analysis of PowerPlex® 16 result for Individual 4 showing 2 with alleles (vWA and THO1). Allele dropout in vWA and THO1 (PDF 64 kb)
414_2007_167_MOESM3_ESM.pdf (47 kb)
Figure S2Aligned sequence of the observed mutation (A1631T) at the vWA locus in Individual 4. Upper panel shows a partial sequence of allele 18 with the mutation (A>T; GenBank accession number EF421234) and the lower panel shows a partial sequence of allele 14 with the wild type. The position of the mutation (gray background) in the sequence is indicated with a vertical arrow, the position of the PowerPlex® 16 primer with a horizontal arrow, and the tandem repeat sequence with a horizontal black bar. Sequence of A1631T mutation in vWA (PDF 48 kb)
414_2007_167_MOESM4_ESM.pdf (46 kb)
Figure S3Aligned sequence of the observed mutation (C1286T) at the THO1 locus in Individual 4. Upper panel shows a partial sequence of allele 9 with the wild type and the lower panel shows a partial sequence of allele 7 with the mutation (C>T; GenBank accession number EF421230). The position of the mutation (gray background) in the sequence is indicated with a vertical arrow and the position of the PowerPlex® 16 primer with a horizontal arrow. Sequence of C1286T mutation in THO1 (PDF 47 kb)
414_2007_167_MOESM5_ESM.pdf (46 kb)
Figure S4Aligned sequence of the observed mutation (G453A) at the D18S51 locus in Individual 7. Lower panel shows a partial sequence of allele 19 with the mutation (G>A; GenBank accession number EF421233) and the upper panel shows a partial sequence of allele 14 with the wild type. The position of the mutation (gray background) in the sequence is indicated with a vertical arrow and the position of the PowerPlex® 16 primer with a horizontal arrow. Sequence of G453A mutation in D18S51 (PDF 47 kb)
414_2007_167_MOESM6_ESM.pdf (47 kb)
Figure S5Sequence analysis of the observed mutation (G152A) at the D18S51 locus in Individual 8. Upper panel shows a partial sequence of allele 14 with the mutation (G>A; GenBank accession number EF421232) and the lower panel shows a partial sequence of allele 20 with the wild type. The position of the mutation (gray background) in the sequence is indicated with a vertical arrow and the position of the PowerPlex® 16 primer with a horizontal arrow. Sequence of G152A mutation in D18S51 (PDF 48 kb)

References

  1. 1.
    Martin PD, Schmitter H, Schneider PM (2001) A brief history of the formation of DNA databases in forensic science within Europe. Forensic Sci Int 119:225–231PubMedCrossRefGoogle Scholar
  2. 2.
    Asplen C, Lane SA (2004) International perspectives on forensic DNA databases. Forensic Sci Int 146(Suppl):S119–S121Google Scholar
  3. 3.
    Corte-Real F (2004) Forensic DNA databases. Forensic Sci Int 146(Suppl):S143–S144CrossRefGoogle Scholar
  4. 4.
    Boutrand L, Egyed B, Furedi S, Mommers N, Mertens G, Vandenberghe A (2001) Variations in primer sequences are the origin of allele drop-out at loci D13S317 and CD4. Int J Legal Med 114:295–297PubMedCrossRefGoogle Scholar
  5. 5.
    Budowle B, Sprecher CJ (2001) Concordance study on population database samples using the PowerPlex 16 kit and AmpFlSTR Profiler Plus kit and AmpFlSTR COfiler kit. J Forensic Sci 46:637–641PubMedGoogle Scholar
  6. 6.
    Han GR, Song ES, Hwang JJ (2001) Non-amplification of an allele of the D8S1179 locus due to a point mutation. Int J Legal Med 115:45–47PubMedCrossRefGoogle Scholar
  7. 7.
    Hering S, Edelmann J, Dressler J (2002) Sequence variations in the primer binding regions of the highly polymorphic STR system SE33. Int J Legal Med 116:365–367PubMedGoogle Scholar
  8. 8.
    Nelson MS, Levedakou EN, Matthews JR et al (2002) Detection of a primer-binding site polymorphism for the STR locus D16S539 using the Powerplex 1.1 system and validation of a degenerate primer to correct for the polymorphism. J Forensic Sci 47:345–349PubMedGoogle Scholar
  9. 9.
    Leibelt C, Budowle B, Collins P et al (2003) Identification of a D8S1179 primer binding site mutation and the validation of a primer designed to recover null alleles. Forensic Sci Int 133:220–227PubMedCrossRefGoogle Scholar
  10. 10.
    Clayton TM, Hill SM, Denton LA, Watson SK, Urquhart AJ (2004) Primer binding site mutations affecting the typing of STR loci contained within the AMPFlSTR SGM Plus kit. Forensic Sci Int 139:255–259PubMedCrossRefGoogle Scholar
  11. 11.
    Delamoye M, Duverneuil C, Riva K, Leterreux M, Taieb S, De Mazancourt P (2004) False homozygosities at various loci revealed by discrepancies between commercial kits: implications for genetic databases. Forensic Sci Int 143:47–52PubMedCrossRefGoogle Scholar
  12. 12.
    Heinrich M, Muller M, Rand S, Brinkmann B, Hohoff C (2004) Allelic drop-out in the STR system ACTBP2 (SE33) as a result of mutations in the primer binding region. Int J Legal Med 118:361–363PubMedCrossRefGoogle Scholar
  13. 13.
    Hering S, Nixdorf R, Dressler J (2005) Identification of more sequence variations in the D8S1179 locus. Forensic Sci Int 149:275–278PubMedCrossRefGoogle Scholar
  14. 14.
    Grgicak CM, Rogers S, Mauterer C (2006) Discovery and identification of new D13S317 primer binding site mutations. Forensic Sci Int 157:36–39PubMedCrossRefGoogle Scholar
  15. 15.
    Decorte R, Engelen M, Larno L, Nelissen K, Gilissen A, Cassiman JJ (2004) Belgian population data for 15 STR loci (AmpFlSTR SGM Plus and AmpFlSTR Profiler PCR amplification kit). Forensic Sci Int 139:211–213PubMedCrossRefGoogle Scholar
  16. 16.
    Decorte R, Verhoeven E, Vanhoutte E, Knaepen K, Cassiman JJ (2006) Allele frequency data for 19 short tandem repeats (PowerPlex 16 and FFFl) in a Belgian population sample. J Forensic Sci 51:436–437PubMedCrossRefGoogle Scholar
  17. 17.
    Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  18. 18.
    Krenke BE, Tereba A, Anderson SJ et al (2002) Validation of a 16-locus fluorescent multiplex system. J Forensic Sci 47:773–785PubMedGoogle Scholar
  19. 19.
    Kline MC, Jenkins B, Rogers S (1998) Non-amplification of a vWA allele. J Forensic Sci 43:250Google Scholar
  20. 20.
    Alves C, Amorim A, Gusmao L, Pereira L (2001) VWA STR genotyping: further inconsistencies between Perkin–Elmer and Promega kits. Int J Legal Med 115:97–99PubMedCrossRefGoogle Scholar
  21. 21.
    Budowle B, Masibay A, Anderson SJ et al (2001) STR primer concordance study. Forensic Sci Int 124:47–54PubMedCrossRefGoogle Scholar
  22. 22.
    Walsh PS (1998) Commentary on Kline MC, Jenkins B, Rogers S, Non-amplification of a vWA allele. J Forensic Sci 43:1103–1104Google Scholar
  23. 23.
    Lazaruk K, Wallin J, Holt C, Nguyen T, Walsh PS (2001) Sequence variation in humans and other primates at six short tandem repeat loci used in forensic identity testing. Forensic Sci Int 119:1–10PubMedCrossRefGoogle Scholar
  24. 24.
    Collins PJ, Hennessy LK, Leibelt CS, Roby RK, Reeder DJ, Foxall PA (2004) Developmental validation of a single-tube amplification of the 13 CODIS STR loci, D2S1338, D19S433, and amelogenin: the AmpFlSTR Identifiler PCR Amplification Kit. J Forensic Sci 49:1265–1277PubMedCrossRefGoogle Scholar
  25. 25.
    Amorim A, Alves C, Pereira L, Gusmao L (2004) Genotyping inconsistencies and null alleles using AmpFlSTR Identifiler and Powerplex 16 kits. In: Doutremépuich C, Morling N (eds) Progress in forensic genetics 10. Elsevier, Amsterdam, pp 176–178Google Scholar
  26. 26.
    Forrest SW, Kupferschmid TD, Hendrickson BC, Judkins T, Petersen DJ, Scholl T (2004) Two rare novel polymorphisms in the D8S1179 and D13S317 markers and method to mitigate their impact on human identification. Croat Med J 45:457–460PubMedGoogle Scholar
  27. 27.
    Hallenberg C, Morling N (2002) A report of the 2000 and 2001 paternity testing workshops of the English speaking working group of the International Society for Forensic Genetics. Forensic Sci Int 129:43–50PubMedCrossRefGoogle Scholar
  28. 28.
    Budowle B, Defenbaugh DA, Keys KM (2000) Genetic variation at nine short tandem repeat loci in Chamorros and Filipinos from Guam. Leg Med (Tokyo) 2:26–30Google Scholar
  29. 29.
    Mennell J, Shaw I (2006) The future of forensic and crime scene science. Part I. A UK forensic science user and provider perspective. Forensic Sci Int 157 Suppl 1:S7–S12PubMedCrossRefGoogle Scholar
  30. 30.
    Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48:1054–1064PubMedGoogle Scholar
  31. 31.
    Grubwieser P, Muhlmann R, Berger B, Niederstatter H, Pavlic M, Parson W (2006) A new “miniSTR-multiplex” displaying reduced amplicon lengths for the analysis of degraded DNA. Int J Legal Med 120:115–120PubMedCrossRefGoogle Scholar
  32. 32.
    Wiegand P, Klein R, Braunschweiger G, Hohoff C, Brinkmann B (2006) Short amplicon STR multiplex for stain typing. Int J Legal Med 120:160–164PubMedCrossRefGoogle Scholar
  33. 33.
    Drabek J, Chung DT, Butler JM, McCord BR (2004) Concordance study between Miniplex assays and a commercial STR typing kit. J Forensic Sci 49:859–860PubMedCrossRefGoogle Scholar
  34. 34.
    De Maesschalck K, Vanhoutte E, Knaepen K, Vanderheyden N, Cassiman JJ, Decorte R (2005) Y-chromosomal STR haplotypes in a Belgian population sample and identification of a micro-variant with a flanking site mutation at DYS19. Forensic Sci Int 152:89–94PubMedCrossRefGoogle Scholar
  35. 35.
    Grubwieser P, Muhlmann R, Niederstatter H, Pavlic M, Parson W (2005) Unusual variant alleles in commonly used short tandem repeat loci. Int J Legal Med 119:164–166PubMedCrossRefGoogle Scholar
  36. 36.
    Heinrich M, Felske-Zech H, Brinkmann B, Hohoff C (2005) Characterisation of variant alleles in the STR systems D2S1338, D3S1358 and D19S433. Int J Legal Med 119:310–313PubMedCrossRefGoogle Scholar
  37. 37.
    Singh Negi D, Alam M, Bhavani SA, Nagaraju J (2006) Multistep microsatellite mutation in the maternally transmitted locus D13S317: a case of maternal allele mismatch in the child. Int J Legal Med 120:286–292PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Nancy Vanderheyden
    • 1
  • Ahnly Mai
    • 1
  • Anja Gilissen
    • 1
  • Jean-Jacques Cassiman
    • 1
  • Ronny Decorte
    • 1
  1. 1.Laboratory of Forensic Genetics and Molecular ArchaeologyK.U. Leuven, Campus Gasthuisberg O&NLeuvenBelgium

Personalised recommendations