Phylogenetic analysis of forensically important Lucilia flies based on cytochrome oxidase I sequence: a cautionary tale for forensic species determination

  • Jeffrey D. Wells
  • Richard Wall
  • Jamie R. Stevens
Short Communication


Forensic scientists are increasingly using DNA to identify the species of a tissue sample. However, little attention has been paid to basic experimental design issues such as replication and the selection of taxa when designing a species diagnostic test. We present an example using the forensically important fly genus Lucilia in which an increasingly larger sample size revealed that species diagnosis based on the commonly used cytochrome oxidase I gene (COI) was less straightforward than we initially thought. This locus may still be useful for diagnosing Lucilia specimens, but additional knowledge other than the genotype will be required to reduce the list of candidate species to include only forms that can be distinguished by COI. We believe that these results illustrate the importance of study design and biological knowledge of the study species when proposing a DNA-based identification test for any taxonomic group.


Forensic species determination Mitochondrial DNA Molecular systematics Calliphoridae Entomology 

Supplementary material


  1. 1.
    Amendt J, Campobasso CP, Gaudry E, Reiter C, LeBlanc HN, Hall MJR (2006) Best practice in forensic entomology—standards and guidelines. Int J Legal Med (in press). DOI 10.1007/s00414-006-0086-x
  2. 2.
    Aubertin D (1933) Revision of the genus Lucilia R.-D. (Diptera, Calliphoridae). Linn Soc J Zool 38:389–463Google Scholar
  3. 3.
    Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  4. 4.
    Benecke M (1998) Random Amplified Polymorphic DNA (RAPD) typing of necrophageous insects (Diptera, Coleoptera) in criminal forensic studies: validation and use in praxi. Forensic Sci Int 98:157–168PubMedCrossRefGoogle Scholar
  5. 5.
    Butler JM (2005) Forensic DNA typing. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Chen WY, Hung TH, Shiao SF (2004) Molecular identification of forensically important blow fly species (Diptera: Calliphoridae) in Taiwan. J Med Entomol 41:47–57PubMedCrossRefGoogle Scholar
  7. 7.
    Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423CrossRefGoogle Scholar
  8. 8.
    Hall MJR, Wall R (1995) Myiasis of humans and animals. Adv Parasitol 35:257–334PubMedCrossRefGoogle Scholar
  9. 9.
    Harvey ML, Dadour IR, Gaudieri S (2003) Mitochondrial DNA cytochrome oxidase I gene: potential for distinction between immature stages of some forensically important fly species (Diptera) in Western Australia. Forensic Sci Int 131:134–139PubMedCrossRefGoogle Scholar
  10. 10.
    Harvey ML, Mansell MW, Villet MH, Dadour IR (2003) Molecular identification of some forensically important blowflies of southern Africa and Australia. Med Vet Entomol 17:363–369PubMedCrossRefGoogle Scholar
  11. 11.
    Kitano T, Umetsu K, Tian W, Osawa M (2006) Two universal primer sets for species identification among vertebrates. Int J Legal Med (in press). DOI 10.1007/s00414-006-0113-y
  12. 12.
    Lenstra JA (2003) DNA methods for identifying plant and animals species in foods. In: Lees M (ed) Food authenticity and traceability. CRC Press, Boca Raton, pp 34–53Google Scholar
  13. 13.
    Lunt DH, Zhang D-X, Szymura JM, Hewitt GM (1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol 5:153–165PubMedGoogle Scholar
  14. 14.
    Malgorn Y, Coquoz R (1999) DNA typing for identification of some species of Calliphoridae. An interest in forensic entomology. Forensic Sci Int 102:111–119PubMedCrossRefGoogle Scholar
  15. 15.
    Moritz C (1996) The uses of molecular phylogenies for conservation. In: Harvey PH, Leigh Brown AJ, Maynard Smith J, Nee S (eds) New uses for new phylogenies. Oxford University Press, Oxford, pp 203–214Google Scholar
  16. 16.
    Norris KR (1990) Evidence for the multiple exotic origin of Australian populations of the sheep blowfly Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Aust J Zool 38:635–648CrossRefGoogle Scholar
  17. 17.
    Palumbi SR, Cipriano F (1998) Species identification using genetic tools: the value of nuclear and mitochondrial gene sequences in whale conservation. J Heredity 89:459–464CrossRefGoogle Scholar
  18. 18.
    Palumbi SR, Cipriano F, Hare MP (2001) Predicting nuclear gene coalescence from mitochondrial data: the three-times rule. Evolution 55:859–868PubMedCrossRefGoogle Scholar
  19. 19.
    Ratcliffe ST, Webb DW, Weinzievr RA, Robertson HM (2003) PCR-RFLP identification of (Diptera, Calliphoridae) on human corpses. J Forensic Sci 48:783–785PubMedGoogle Scholar
  20. 20.
    Smith KGV (1986) A manual of forensic entomology. British Museum (Natural History), LondonGoogle Scholar
  21. 21.
    Sperling FAH, Anderson GS, Hickey DA (1994) A DNA-based approach to the identification of insect species used for postmortem interval estimation. J Forensic Sci 39:418–427 (published erratum appears in letter from Wells and Sperling (2000) J Forensic Sci 45:1358–1359)PubMedGoogle Scholar
  22. 22.
    Stevens JR (2003) The evolution of myiasis in blowflies (Calliphoridae). Int J Parasitol 33:1105–1113PubMedCrossRefGoogle Scholar
  23. 23.
    Stevens JR, Wall R (1995) The use of randomly amplified polymorphic DNA (RAPD) analysis for studies of genetic variation in populations of the blowfly Lucilia sericata (Diptera: Calliphoridae) in southern England. Bull Entomol Res 85:549–555CrossRefGoogle Scholar
  24. 24.
    Stevens JR, Wall R (1996) Species, sub-species and hybrid populations of the blowflies Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae). Proc R Soc Lond B Biol Sci 263:1335–1341CrossRefGoogle Scholar
  25. 25.
    Stevens JR, Wall R (1997) The evolution of ectoparasitism in the genus Lucilia (Diptera: Calliphoridae). Int J Parasitol 27:51–59PubMedCrossRefGoogle Scholar
  26. 26.
    Stevens JR, Wall R (2001) Genetic relationships between blowflies (Calliphoridae) of forensic importance. Forensic Sci Int 120:116–123PubMedCrossRefGoogle Scholar
  27. 27.
    Stevens JR, Wall R, Wells JD (2002) Paraphyly in Hawaiian hybrid blowfly populations and the evolutionary history of anthropophilic species. Insect Mol Biol 11:141–148PubMedCrossRefGoogle Scholar
  28. 28.
    Swofford DL (1998) PAUP, phylogenetic analysis using parsimony (and other methods), version 4. Sinauer, SunderlandGoogle Scholar
  29. 29.
    Vincent S, Vian JM, Carlotti MP (2000) Partial sequencing of the cytochrome oxydase b subunit gene I: a tool for the identification of European species of blow flies for postmortem interval estimation. J Forensic Sci 45:820–823 (published erratum appears in letter from Wells and Sperling (2000) J Forensic Sci 45:1358–1359)PubMedGoogle Scholar
  30. 30.
    Wallman JF, Donnellan SC (2001) The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in southeastern Australia. Forensic Sci Int 120:60–67PubMedCrossRefGoogle Scholar
  31. 31.
    Wallman JF, Leys R, Hogendoorn K (2005) Molecular systematics of Australian carrion-breeding blowflies (Diptera: Calliphoridae) based on mitochondrial DNA. Invertebrate Systematics 19:1–15CrossRefGoogle Scholar
  32. 32.
    Ward J, Peakall R, Gilmore SR, Robertson J (2005) A molecular identification system for grasses: a novel technology for forensic botany. Forensic Sci Int 152:121–131PubMedCrossRefGoogle Scholar
  33. 33.
    Waterhouse DF, Paramonov SJ (1950) The status of the two species of Lucilia (Diptera, Calliphoridae) attacking sheep in Australia. Aust J Sci Res B 3:310–336Google Scholar
  34. 34.
    Wells JD, Sperling FAH (1999) Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae). J Med Entomol 36:222–226PubMedGoogle Scholar
  35. 35.
    Wells JD, Sperling FAH (2001) DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic Sci Int 120:109–114CrossRefGoogle Scholar
  36. 36.
    Wells JD, Williams DW (2007) Validation of a DNA-based method for identifying Chrysomyinae (Diptera: Calliphoridae) used in a death investigation. Int J Legal Med 121:1–8Google Scholar
  37. 37.
    Wells JD, Introna F, Di Vella G, Campobasso CP, Hayes J, Sperling FA (2001) Human and insect mitochondrial DNA analysis from maggots. J Forensic Sci 46:261–263Google Scholar
  38. 38.
    Wells JD, Goff ML, Tomberlin JK, Kurahashi H (2002) Molecular systematics of the endemic Hawaiian blowfly genus Dyscritomyia Grimshaw, (Diptera: Calliphoridae). Med Entomol Zool 53(Suppl 2):231–238Google Scholar
  39. 39.
    Zehner R, Amendt J, Schutt S, Sauer J, Krettek R, Povolny D (2004) Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae). Int J Legal Med 118: 245–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jeffrey D. Wells
    • 1
  • Richard Wall
    • 2
  • Jamie R. Stevens
    • 3
  1. 1.Department of BiologyWest Virginia UniversityMorgantownUSA
  2. 2.School of Biological SciencesUniversity of BristolBristolUK
  3. 3.School of Biological SciencesHatherly Building, University of ExeterExeterUK

Personalised recommendations