International Journal of Legal Medicine

, Volume 120, Issue 4, pp 201–211 | Cite as

The human brain and its neural stem cells postmortem: from dead brains to live therapy

  • Robert E. FeldmannJrEmail author
  • Rainer Mattern
Review Article


Contrary to the traditional dogma of being a relatively invariable and quiescent organ lacking the capability to regenerate, there is now widespread evidence that the human brain harbors multipotent neural stem cells, possibly throughout senescence. These cells can divide and give rise to neuroectodermal progeny in vivo and are now regarded as powerful prospective candidates for repairing or enhancing the functional capability of neural tissue in trauma or diseases associated with degeneration or malperfusion. Hopes primarily rest upon techniques to either recruit endogenous stem cells or to utilize exogenous donor-derived material for transplantation. In the search for suitable human cell sources, embryonic, fetal, and adult stem cells appear highly controversial, as they are accompanied by various still-unresolved moral and legal challenges. Fascinatingly, however, recent reports indicate the successful isolation and expansion of viable neural stem cells from the rodent and human brain within a considerable postmortem interval, suggesting that postmortem neural stem cells could potentially become an acceptable alternative cellular resource. This article will provide a brief overview about neural stem cells, their prominent features, and prospects for a cellular therapy, and will furthermore illuminate the cells in particular with respect to their newly discovered postmortem provenience, their advantage as a potential cell source, and several unfolding forensic considerations. Also, important ethical, social, and legal implications arising from this hitherto unpracticed cellular harvest of brain tissue from the deceased are outlined.


Neural stem cell Human brain Postmortem Therapeutic applications Ethical and legal requisites 



The authors are indebted to W. Kuschinsky, Heidelberg, for critical comments on the manuscript; H. Marti, Heidelberg, for the fruitful discussions on hypoxic conditions and hypoxia-inducible factors in the brain; J. Taupitz, Mannheim, and C. Rittner, Mainz, for helping to unwind the complexity of related international legal practice; and F. Schueler, Heidelberg, for his helpful comments on in situ organ donation at accident sites.


  1. 1.
    Abe K (2000) Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. J Cereb Blood Flow Metab 20:1393–1408CrossRefPubMedGoogle Scholar
  2. 2.
    Ackerman TF, Winsett RP (2002) Ethics and regulation in organ procurement research. Prog Transplant 12:257–263PubMedGoogle Scholar
  3. 3.
    Alvarez-Buylla A, Herrera DG, Wichterle H (2000) The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res 127:1–11PubMedGoogle Scholar
  4. 4.
    Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634PubMedGoogle Scholar
  5. 5.
    Antoniou M (2001) Embryonic stem cell research. The case against. Nat Med 7:397–399CrossRefPubMedGoogle Scholar
  6. 6.
    Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Deglon N, Kostic C, Zurn A, Aebischer P (2001) Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol 170:48–62CrossRefPubMedGoogle Scholar
  7. 7.
    Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970CrossRefPubMedGoogle Scholar
  8. 8.
    Back T, Hemmen T, Schuler OG (2004) Lesion evolution in cerebral ischemia. J Neurol 251:388–397CrossRefPubMedGoogle Scholar
  9. 9.
    Bassal S, El-Osta A (2005) DNA damage detection and repair, and the involvement of epigenetic states. Human Mutat 25:101–109CrossRefGoogle Scholar
  10. 10.
    Bauer S, Hay M, Amilhon B, Jean A, Moyse E (2005) In vivo neurogenesis in the dorsal vagal complex of the adult rat brainstem. Neuroscience 130:75–90CrossRefPubMedGoogle Scholar
  11. 11.
    Bernier PJ, Bedard A, Vinet J, Levesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci U S A 99:11464–11469CrossRefPubMedGoogle Scholar
  12. 12.
    Brazier M, Squier W, Duyckaerts C, Seilhean D, Hauw JJ, Adamson R (2004) The human tissue bill. Lancet Neurol 3:685–690CrossRefPubMedGoogle Scholar
  13. 13.
    Brevig T, Pedersen EB, Finsen B (2000) Molecular and cellular mechanisms in immune rejection of intracerebral neural transplants. Novartis Found Symp 231:166–177; discussion 177–183, 302–166PubMedCrossRefGoogle Scholar
  14. 14.
    Busuttil RA, Dolle M, Campisi J, Vijga J (2004) Genomic instability, aging, and cellular senescence. Ann N Y Acad Sci 1019:245–255CrossRefPubMedGoogle Scholar
  15. 15.
    Calabresi P, Centonze D, Pisani A, Cupini L, Bernardi G (2003) Synaptic plasticity in the ischaemic brain. Lancet Neurol 2:622–629CrossRefPubMedGoogle Scholar
  16. 16.
    Cameron HA, Hazel TG, McKay RD (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 36:287–306CrossRefPubMedGoogle Scholar
  17. 17.
    Carlen M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisen J (2002) Functional integration of adult-born neurons. Curr Biol 12:606–608CrossRefPubMedGoogle Scholar
  18. 18.
    Carleton A, Rochefort C, Morante-Oria J, Desmaisons D, Vincent JD, Gheusi G, Lledo PM (2002) Making scents of olfactory neurogenesis. J Physiol (Paris) 96:115–122CrossRefGoogle Scholar
  19. 19.
    Catts VS, Catts SV, Fernandez HR, Taylor JM, Coulson EJ, Lutze-Mann LH (2005) A microarray study of post-mortem mRNA degradation in mouse brain tissue. Brain Res Mol Brain Res 138:164–177CrossRefPubMedGoogle Scholar
  20. 20.
    Chirumamilla S, Sun D, Bullock MR, Colello RJ (2002) Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma 19:693–703CrossRefPubMedGoogle Scholar
  21. 21.
    Chung CS, Lehmann LS (2002) Informed consent and the process of cadaver donation. Arch Pathol Lab Med 126:964–968PubMedGoogle Scholar
  22. 22.
    Cipolleschi MG, Dello Sbarba P, Olivotto M (1993) The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82:2031–2037PubMedGoogle Scholar
  23. 23.
    Cleiren MP, Van Zoelen AA (2002) Post-mortem organ donation and grief: a study of consent, refusal and well-being in bereavement. Death Stud 26:837–849CrossRefPubMedGoogle Scholar
  24. 24.
    Council of Europe, Convention on Human Rights and Biomedicine (2004)
  25. 25.
    Conboy IM, Rando TA (2005) Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4:407–410PubMedGoogle Scholar
  26. 26.
    Consiglio A, Gritti A, Dolcetta D, Follenzi A, Bordignon C, Gage FH, Vescovi AL, Naldini L (2004) Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc Natl Acad Sci U S A 101:14835–14840CrossRefPubMedGoogle Scholar
  27. 27.
    Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003) Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112:126–135CrossRefPubMedGoogle Scholar
  28. 28.
    Danton GH, Dietrich WD (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62:127–136PubMedGoogle Scholar
  29. 29.
    Deasy BM, Gharaibeh BM, Pollett JB, Jones MM, Lucas MA, Kanda Y, Huard J (2005) Long-term self-renewal of postnatal muscle-derived stem cells. Mol Biol Cell 16:3323–3333CrossRefPubMedGoogle Scholar
  30. 30.
    Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 94:4080–4085CrossRefPubMedGoogle Scholar
  31. 31.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317CrossRefPubMedGoogle Scholar
  32. 32.
    Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102:4783–4788CrossRefPubMedGoogle Scholar
  33. 33.
    Falk A, Holmstrom N, Carlen M, Cassidy R, Lundberg C, Frisen J (2002) Gene delivery to adult neural stem cells. Exp Cell Res 279:34–39CrossRefPubMedGoogle Scholar
  34. 34.
    Fallon J, Reid S, Kinyamu R, Opole I, Opole R, Baratta J, Korc M, Endo TL, Duong A, Nguyen G, Karkehabadhi M, Twardzik D, Patel S, Loughlin S (2000) In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci U S A 97:14686–14691CrossRefPubMedGoogle Scholar
  35. 35.
    Feldmann RE Jr (2004) Differential proteome analysis of neural stem cells from the adult brain. Dissertation, University of Heidelberg Medical School, Heidelberg (in German, abstract in English)Google Scholar
  36. 36.
    Feldmann RE Jr, Bieback K, Maurer MH, Kalenka A, Bürgers HF, Gross B, Hunzinger C, Klüter H, Kuschinsky W, Eichler H (2005) Stem cell proteomes: a profile of human mesenchymal stem cells derived from umbilical cord blood. Electrophoresis 26:2749–2758CrossRefPubMedGoogle Scholar
  37. 37.
    Felling RJ, Levison SW (2003) Enhanced neurogenesis following stroke. J Neurosci Res 73:277–283CrossRefPubMedGoogle Scholar
  38. 38.
    Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36:249–266CrossRefPubMedGoogle Scholar
  39. 39.
    Geiger H, Rennebeck G, Van Zant G (2005) Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proc Natl Acad Sci U S A 102:5102–5107CrossRefPubMedGoogle Scholar
  40. 40.
    Gevers S, Janssen A, Friele R (2004) Consent systems for post mortem organ donation in Europe. Eur J Health Law 11:175–186CrossRefPubMedGoogle Scholar
  41. 41.
    Gheusi G, Cremer H, McLean H, Chazal G, Vincent JD, Lledo PM (2000) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci U S A 97:1823–1828CrossRefPubMedGoogle Scholar
  42. 42.
    Gos T, Hauser R (1996) Evaluation of the emotional state shortly before death—science-fiction or a new challenge? Int J Leg Med 108:327–328Google Scholar
  43. 43.
    Gould E, Tanapat P (1997) Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience 80:427–436CrossRefPubMedGoogle Scholar
  44. 44.
    Grisolia JS (2002) CNS stem cell transplantation: clinical and ethical perspectives. Brain Res Bull 57:823–826CrossRefPubMedGoogle Scholar
  45. 45.
    Gunzburg WH, Salmons B (2000) Xenotransplantation: is the risk of viral infection as great as we thought? Mol Med Today 6:199–208CrossRefPubMedGoogle Scholar
  46. 46.
    Hilbig H, Bidmon HJ, Oppermann OT, Remmerbach T (2004) Influence of post-mortem delay and storage temperature on the immunohistochemical detection of antigens in the CNS of mice. Exp Toxicol Pathol 56:159–171CrossRefPubMedGoogle Scholar
  47. 47.
    Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98:4710–4715CrossRefPubMedGoogle Scholar
  48. 48.
    Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171–189CrossRefPubMedGoogle Scholar
  49. 49.
    Johansson CB, Svensson M, Wallstedt L, Janson AM, Frisen J (1999) Neural stem cells in the adult human brain. Exp Cell Res 253:733–736CrossRefPubMedGoogle Scholar
  50. 50.
    Kaelin WG Jr (2002) How oxygen makes its presence felt. Genes Dev 16:1441–1445CrossRefPubMedGoogle Scholar
  51. 51.
    Kempermann G (2002) Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci 22:635–638PubMedGoogle Scholar
  52. 52.
    Kirschenbaum B, Nedergaard M, Preuss A, Barami K, Fraser RA, Goldman SA (1994) In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb Cortex 4:576–589PubMedGoogle Scholar
  53. 53.
    Kitamura O (1994) Immunohistochemical investigation of hypoxic/ischemic brain damage in forensic autopsy cases. Int J Leg Med 107:69–76CrossRefGoogle Scholar
  54. 54.
    Klassen H, Ziaeian B, Kirov II, Young MJ, Schwartz PH (2004) Isolation of retinal progenitor cells from post-mortem human tissue and comparison with autologous brain progenitors. J Neurosci Res 77:334–343CrossRefPubMedGoogle Scholar
  55. 55.
    Knowles D (2001) Parents' consent to the post-mortem removal and retention of organs. J Appl Philos 18:215–227CrossRefPubMedGoogle Scholar
  56. 56.
    Kokaia Z, Lindvall O (2003) Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 13:127–132CrossRefPubMedGoogle Scholar
  57. 57.
    Krtolica A (2005) Stem cell: balancing aging and cancer. Int J Biochem Cell Biol 37:935–941CrossRefPubMedGoogle Scholar
  58. 58.
    Kruger GM, Morrison SJ (2002) Brain repair by endogenous progenitors. Cell 110:399–402CrossRefPubMedGoogle Scholar
  59. 59.
    Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, O'Brien TF, Kusakabe M, Steindler DA (1999) Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 156:333–344CrossRefPubMedGoogle Scholar
  60. 60.
    Lanza DC, Deems DA, Doty RL, Moran D, Crawford D, Rowley JC III, Sajjadian A, Kennedy DW (1994) The effect of human olfactory biopsy on olfaction: a preliminary report. Laryngoscope 104:837–840PubMedGoogle Scholar
  61. 61.
    Laywell ED, Kukekov VG, Steindler DA (1999) Multipotent neurospheres can be derived from forebrain subependymal zone and spinal cord of adult mice after protracted postmortem intervals. Exp Neurol 156:430–433CrossRefPubMedGoogle Scholar
  62. 62.
    Laywell ED, Kukekov VG, Suslov O, Zheng T, Steindler DA (2002) Production and analysis of neurospheres from acutely dissociated and postmortem CNS specimens. Methods Mol Biol 198:15–27PubMedGoogle Scholar
  63. 63.
    Leuner B, Mendolia-Loffredo S, Kozorovitskiy Y, Samburg D, Gould E, Shors TJ (2004) Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J Neurosci 24:7477–7481CrossRefPubMedGoogle Scholar
  64. 64.
    Leuner B, Shors TJ (2004) New spines, new memories. Mol Neurobiol 29:117–130CrossRefPubMedGoogle Scholar
  65. 65.
    Li J, Gould TD, Yuan P, Manji HK, Chen G (2003) Post-mortem interval effects on the phosphorylation of signaling proteins. Neuropsychopharmacology 28:1017–1025CrossRefPubMedGoogle Scholar
  66. 66.
    Li X, Friedman AB, Roh MS, Jope RS (2005) Anesthesia and post-mortem interval profoundly influence the regulatory serine phosphorylation of glycogen synthase kinase-3 in mouse brain. J Neurochem 92:701–704CrossRefPubMedGoogle Scholar
  67. 67.
    Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106:1479–1487CrossRefPubMedGoogle Scholar
  68. 68.
    Lin H (2002) The stem-cell niche theory: lessons from flies. Nat Rev Genet 3:931–940CrossRefPubMedGoogle Scholar
  69. 69.
    Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders—how to make it work. Nat Med 10(Suppl):S42–S50CrossRefPubMedGoogle Scholar
  70. 70.
    Lippert HD (2001) Research on and with bodily substances—when is a consent of the former bearer necessary? Med Res 8:406–410 (in German)Google Scholar
  71. 71.
    Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568PubMedGoogle Scholar
  72. 72.
    Liu Z, Martin LJ (2003) Olfactory bulb core is a rich source of neural progenitor and stem cells in adult rodent and human. J Comp Neurol 459:368–391CrossRefPubMedGoogle Scholar
  73. 73.
    Loeffler M, Potten CS (1997) Stem cells and cellular pedigrees—a conceptual introduction. In: Potten CS (ed) Stem cells. Academic, London, pp 1–27Google Scholar
  74. 74.
    Lowenstein PR (2002) Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends Immunol 23:23–30CrossRefPubMedGoogle Scholar
  75. 75.
    Macklis JD (2001) Neurobiology: new memories from new neurons. Nature 410:314–315, 317CrossRefPubMedGoogle Scholar
  76. 76.
    Marti HH (2004) Angiogenesis—a self adapting principle in hypoxia. In: Clauss M, Breier G (eds) Mechanisms of angiogenesis. Birkhaeuser, Basel, pp 163–179Google Scholar
  77. 77.
    Maurer MH, Tripps WKC, Feldmann RE Jr, Kuschinsky W (2003) Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci Lett 344:165–168CrossRefPubMedGoogle Scholar
  78. 78.
    Maurer MH, Feldmann RE Jr, Futterer CD, Butlin J, Kuschinsky W (2004) Comprehensive proteome expression profiling of undifferentiated versus differentiated neural stem cells from adult rat hippocampus. Neurochem Res 29:1129–1144CrossRefPubMedGoogle Scholar
  79. 79.
    McLaren A (2001) Ethical and social considerations of stem cell research. Nature 414:129–131CrossRefPubMedGoogle Scholar
  80. 80.
    Meske V, Albert F, Wehser R, Ohm TG (1999) Culture of autopsy-derived fibroblasts as a tool to study systemic alterations in human neurodegenerative disorders such as Alzheimer's disease—methodological investigations. J Neural Transm 106:537–548CrossRefPubMedGoogle Scholar
  81. 81.
    Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782CrossRefPubMedGoogle Scholar
  82. 82.
    Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T, Troyer D (2003) Matrix cells from Wharton's jelly form neurons and glia. Stem Cells 21:50–60PubMedGoogle Scholar
  83. 83.
    Morrison SJ, Csete M, Groves AK, Melega W, Wold B, Anderson DJ (2000) Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci 20:7370–7376PubMedGoogle Scholar
  84. 84.
    Murrell W, Bushell GR, Livesey J, McGrath J, MacDonald KP, Bates PR, Mackay-Sim A (1996) Neurogenesis in adult human. NeuroReport 7:1189–1194PubMedGoogle Scholar
  85. 85.
    Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441CrossRefPubMedGoogle Scholar
  86. 86.
    Newman MB, Davis CD, Borlongan CV, Emerich D, Sanberg PR (2004) Transplantation of human umbilical cord blood cells in the repair of CNS diseases. Expert Opin Biol Ther 4:121–130CrossRefPubMedGoogle Scholar
  87. 87.
    NIH (2001) Stem cells: scientific progress and future research directions. U.S. Dept. of Health and Human Services, National Institutes of Health, Washington, DCGoogle Scholar
  88. 88.
    Northoff G (1996) Do brain tissue transplants alter personal identity? Inadequacies of some “standard” arguments. J Med Ethics 22:174–180PubMedCrossRefGoogle Scholar
  89. 89.
    Nottebohm F (2002) Why are some neurons replaced in adult brain? J Neurosci 22:624–628PubMedGoogle Scholar
  90. 90.
    Nottebohm F (2004) The road we travelled: discovery, choreography, and significance of brain replaceable neurons. Ann N Y Acad Sci 1016:628–658CrossRefPubMedGoogle Scholar
  91. 91.
    Ogunshola OO, Antic A, Donoghue MJ, Fan SY, Kim H, Stewart WB, Madri JA, Ment LR (2002) Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 277:11410–11415CrossRefPubMedGoogle Scholar
  92. 92.
    Pagano SF, Impagnatiello F, Girelli M, Cova L, Grioni E, Onofri M, Cavallaro M, Etteri S, Vitello F, Giombini S, Solero CL, Parati EA (2000) Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem Cells 18:295–300CrossRefPubMedGoogle Scholar
  93. 93.
    Palmer TD, Ray J, Gage FH (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 6:474–486CrossRefPubMedGoogle Scholar
  94. 94.
    Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389–404CrossRefPubMedGoogle Scholar
  95. 95.
    Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH (1999) Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 19:8487–8497PubMedGoogle Scholar
  96. 96.
    Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494CrossRefPubMedGoogle Scholar
  97. 97.
    Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH (2001) Cell culture. Progenitor cells from human brain after death. Nature 411:42–43CrossRefPubMedGoogle Scholar
  98. 98.
    Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738PubMedGoogle Scholar
  99. 99.
    Park Y, Gerson SL (2005) DNA repair defects in stem cell function and aging. Annu Rev Med 56:495–508CrossRefPubMedGoogle Scholar
  100. 100.
    Patience C, Takeuchi Y, Weiss RA (1998) Zoonosis in xenotransplantation. Curr Opin Immunol 10:539–542CrossRefPubMedGoogle Scholar
  101. 101.
    Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172:1–16CrossRefPubMedGoogle Scholar
  102. 102.
    Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21:6706–6717PubMedGoogle Scholar
  103. 103.
    Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A (2004) Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. J Neurosci Res 76:223–231CrossRefPubMedGoogle Scholar
  104. 104.
    Pincus DW, Harrison-Restelli C, Barry J, Goodman RR, Fraser RA, Nedergaard M, Goldman SA (1997) In vitro neurogenesis by adult human epileptic temporal neocortex. Clin Neurosurg 44:17–25PubMedGoogle Scholar
  105. 105.
    Poulsom R, Alison MR, Forbes SJ, Wright NA (2002) Adult stem cell plasticity. J Pathol 197:441–456CrossRefPubMedGoogle Scholar
  106. 106.
    Ramirez-Bergeron DL, Simon MC (2001) Hypoxia-inducible factor and the development of stem cells of the cardiovascular system. Stem Cells 19:279–286CrossRefPubMedGoogle Scholar
  107. 107.
    Rao MS, Hattiangady B, Abdel-Rahman A, Stanley DP, Shetty AK (2005) Newly born cells in the ageing dentate gyrus display normal migration, survival and neuronal fate choice but endure retarded early maturation. Eur J Neurosci 21:464–476CrossRefPubMedGoogle Scholar
  108. 108.
    Reh TA (2002) Neural stem cells: form and function. Nat Neurosci 5:392–394CrossRefPubMedGoogle Scholar
  109. 109.
    Roisen FJ, Klueber KM, Lu CL, Hatcher LM, Dozier A, Shields CB, Maguire S (2001) Adult human olfactory stem cells. Brain Res 890:11–22CrossRefPubMedGoogle Scholar
  110. 110.
    Roloff TC, Nuber UA (2005) Chromatin, epigenetics and stem cells. Eur J Cell Biol 84:123–135CrossRefPubMedGoogle Scholar
  111. 111.
    Romanko MJ, Rothstein RP, Levison SW (2004) Neural stem cells in the subventricular zone are resilient to hypoxia/ischemia whereas progenitors are vulnerable. J Cereb Blood Flow Metab 24:814–825CrossRefPubMedGoogle Scholar
  112. 112.
    Romero-Ramos M, Vourc'h P, Young HE, Lucas PA, Wu Y, Chivatakarn O, Zaman R, Dunkelman N, el-Kalay MA, Chesselet MF (2002) Neuronal differentiation of stem cells isolated from adult muscle. J Neurosci Res 69:894–907CrossRefPubMedGoogle Scholar
  113. 113.
    Roy NS, Benraiss A, Wang S, Fraser RA, Goodman R, Couldwell WT, Nedergaard M, Kawaguchi A, Okano H, Goldman SA (2000) Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J Neurosci Res 59:321–331CrossRefPubMedGoogle Scholar
  114. 114.
    Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell WT, Kawaguchi A, Okano H, Nedergaard M, Goldman SA (2000) In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 6:271–277PubMedGoogle Scholar
  115. 115.
    Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371–379CrossRefPubMedGoogle Scholar
  116. 116.
    Sanchez-Ramos JR (2002) Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res 69:880–893CrossRefPubMedGoogle Scholar
  117. 117.
    Scheurer E, Ith M, Dietrich D, Kreis R, Husler J, Dirnhofer R, Boesch C (2005) Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain. NMR Biomed 18:163–172CrossRefPubMedGoogle Scholar
  118. 118.
    Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187CrossRefPubMedGoogle Scholar
  119. 119.
    Schwartz PH, Bryant PJ, Fuja TJ, Su H, O'Dowd DK, Klassen H (2003) Isolation and characterization of neural progenitor cells from post-mortem human cortex. J Neurosci Res 74:838–851CrossRefPubMedGoogle Scholar
  120. 120.
    Semenza GL (2001) HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13:167–171CrossRefPubMedGoogle Scholar
  121. 121.
    Sharp FR, Liu J, Bernabeu R (2002) Neurogenesis following brain ischemia. Brain Res Dev Brain Res 134:23–30CrossRefPubMedGoogle Scholar
  122. 122.
    Shors TJ (2004) Memory traces of trace memories: neurogenesis, synaptogenesis and awareness. Trends Neurosci 27:250–256CrossRefPubMedGoogle Scholar
  123. 123.
    Snyder EY, Daley GQ, Goodell M (2004) Taking stock and planning for the next decade: realistic prospects for stem cell therapies for the nervous system. J Neurosci Res 76:157–168CrossRefPubMedGoogle Scholar
  124. 124.
    Snyder JS, Kee N, Wojtowicz JM (2001) Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol 85:2423–2431PubMedGoogle Scholar
  125. 125.
    Song HJ, Stevens CF, Gage FH (2002) Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci 5:438–445PubMedGoogle Scholar
  126. 126.
    Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B, McKay R (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20:7377–7383PubMedGoogle Scholar
  127. 127.
    Thaik-Oo M, Tanaka E, Tsuchiya T, Kominato Y, Honda K, Yamazaki K, Misawa S (2002) Estimation of postmortem interval from hypoxic inducible levels of vascular endothelial growth factor. J Forensic Sci 47:186–189PubMedGoogle Scholar
  128. 128.
    Tonchev AB, Yamashima T, Zhao L, Okano HJ, Okano H (2003) Proliferation of neural and neuronal progenitors after global brain ischemia in young adult macaque monkeys. Mol Cell Neurosci 23:292–301CrossRefPubMedGoogle Scholar
  129. 129.
    Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036CrossRefPubMedGoogle Scholar
  130. 130.
    Uhlenbruck W, Ulsenheimer K (2002) The problem of organ transplantation in civil law. In: Laufs A (ed) Handbook of physician's law. C.H. Beck, Munich, p 1152 (in German)Google Scholar
  131. 131.
    Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol 205:194–201CrossRefPubMedGoogle Scholar
  132. 132.
    Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034CrossRefPubMedGoogle Scholar
  133. 133.
    Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609PubMedGoogle Scholar
  134. 134.
    Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16:1151–1162CrossRefPubMedGoogle Scholar
  135. 135.
    WHO (1991) World Health Organization: guiding principles on human organ transplantation. Lancet 337:1470–1471Google Scholar
  136. 136.
    Wiesemann C, Biller-Andorno N (2005) Medizinethik. Thieme, Stuttgart, pp 57–70 (in German)Google Scholar
  137. 137.
    World Medical Association Decleration of Helsinki (2004)
  138. 138.
    Xu Y, Kimura K, Matsumoto N, Ide C (2003) Isolation of neural stem cells from the forebrain of deceased early postnatal and adult rats with protracted post-mortem intervals. J Neurosci Res 74:533–540CrossRefPubMedGoogle Scholar
  139. 139.
    Yamamoto S, Yamamoto N, Kitamura T, Nakamura K, Nakafuku M (2001) Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol 172:115–127CrossRefPubMedGoogle Scholar
  140. 140.
    Yamashima T, Tonchev AB, Vachkov IH, Popivanova BK, Seki T, Sawamoto K, Okano H (2004) Vascular adventitia generates neuronal progenitors in the monkey hippocampus after ischemia. Hippocampus 14:861CrossRefPubMedGoogle Scholar
  141. 141.
    Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, Bakowska JC, Breakefield XO, Moskowitz MA (2001) FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci U S A 98:5874–5879CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Psychiatry, Division of NeurobiologyThe Johns Hopkins University Medical Institutions, Children's Medical and Surgical Center (CMSC)BaltimoreUSA
  2. 2.Department of Physiology and PathophysiologyUniversity of HeidelbergHeidelbergGermany
  3. 3.Department of Forensic Medicine and Traffic MedicineUniversity of HeidelbergHeidelbergGermany

Personalised recommendations