International Journal of Legal Medicine

, Volume 120, Issue 4, pp 212–218 | Cite as

Finite element modelling of human head injuries caused by a fall

  • Jean-Sébastien Raul
  • Daniel Baumgartner
  • Rémy Willinger
  • Bertrand Ludes
Original Article

Abstract

Finite element models (FEMs) can be used as prediction tools for human head injuries caused by falls. The purpose of this paper is to demonstrate the relevance of using human head FEM to assess the possible mechanism for the origin of head injuries. The FEM of the human head used in this study was developed in the late 1990s at the University Louis Pasteur of Strasbourg (ULP) and has been validated for human head impacts for simulating human head injuries caused by car accidents. Its use in legal medicine appears to be very useful for comparing different injury mechanisms. We present the simulation obtained for two witnessed falls of the same individual, and compare our results to tolerance limits of the main human head injuries. We show that this tool can be used to discuss the possible mechanism of injury encountered for the observed lesions in a forensic case. It can also help to distinguish between possible and impossible human head injury mechanisms.

Keywords

Finite element models Forensic science Head injury Reconstruction 

References

  1. 1.
    Willinger R, Kang HS, Diaw BM (1999) Développement et validation d'un modèle mécanique de la tête humaine. C R Acad Sci 326:125–131Google Scholar
  2. 2.
    Schuck LZ, Advani SH (1972) Rheological response of human brain tissue in shearing. J Biomech Eng 3:55–70Google Scholar
  3. 3.
    Willinger R, Taleb L, Kopp CM (1995) Modal and temporal analysis of head mathematical models. J Neurotrauma 12:743–754PubMedCrossRefGoogle Scholar
  4. 4.
    Zhou C, Kahlil TB, Dragovic LJ (1996) Head injury assessment of a real world crash by finite element modelling. Proceedings of the AGARD Conference, New Mexico, USA, November 1996, pp 81–87Google Scholar
  5. 5.
    Wood JL (1971) Dynamical response of human cranial bone. J Biomech 4:1–12CrossRefPubMedGoogle Scholar
  6. 6.
    Melvin JW, Evans FG (1971) A strain energy approach to the mechanics of skull fracture. Proceedings of the 15th STAPP Car Crash Conference, San Diego, USA, November 1971, pp 666–685Google Scholar
  7. 7.
    Nahum AM, Smith R, Ward CC (1977) Intracranial pressure dynamics during head impact. Proceedings of the 21st STAPP Car Crash Conference, New Orleans, USA, October 1977, pp 339–366Google Scholar
  8. 8.
    Trosseille X, Tarrière C, Lavaste F, Guillon F, Domont A (1992) Development of a FEM of the human head according to a specific test protocol. Proceedings of the 36th STAPP Car Crash Conference, Seattle, USA, November 1992, pp 235–253Google Scholar
  9. 9.
    Yogonandan N, Pintar FA, Sances A, Walsh PR, Ewing CL, Snyder T, Snyder RG (1994) Biomechanics of skull fracture. Proceedings of the Head Injury Symposium, Washington, USA, September 1994, pp 227–236Google Scholar
  10. 10.
    Baumgartner D (2001) Mécanismes de lésion et limites de tolérance au choc de la tête humaine—Reconstruction numérique et expérimentale de traumatismes crâniens. Ph.D. dissertation, Université Louis Pasteur Strasbourg I, FranceGoogle Scholar
  11. 11.
    Duhaime AC, Gennarelli TA, Thibault LE, Bruce DA, Margulies SS, Wiser R (1987) The shaken baby syndrome. A clinical, pathological, and biomechanical study. J Neurosurg 66:409–415PubMedCrossRefGoogle Scholar
  12. 12.
    Jones MD, James DS, Cory CZ, Leadbeatter S, Nokes LD (2003) Subdural haemorrhage sustained in a baby-rocker? A biomechanical approach to causation. Forensic Sci Int 131:14–21CrossRefPubMedGoogle Scholar
  13. 13.
    Cory CZ, Jones MD, James DS, Leadbeatter S, Nokes LD (2001) The potential and limitations of utilising head impact injury models to assess the likelihood of significant head injury in infants after a fall. Forensic Sci Int 123:89–106CrossRefPubMedGoogle Scholar
  14. 14.
    Cory CZ, Jones BM (2003) Can shaking alone cause fatal brain injury? A biomechanical assessment of the Duhaime shaken baby syndrome model. Med Sci Law 43:317–333PubMedCrossRefGoogle Scholar
  15. 15.
    O'Riordain K, Thomas PM, Phillips JP, Gilchrist MD (2003) Reconstruction of real world head injury accidents resulting from falls using multibody dynamics. Clin Biomech 18:590–600CrossRefGoogle Scholar
  16. 16.
    Vock R (2001) Liver rupture caused by isolated blunt force impact: the result of a blow, a kick or a fall? Int J Legal Med 114:244–247CrossRefPubMedGoogle Scholar
  17. 17.
    DuChesne A, Unnewehr M, Schmidt PF et al (2003) Deformation characteristics of the human mandible in low impact experiments. Int J Legal Med 117:257–262CrossRefPubMedGoogle Scholar
  18. 18.
    Unnewehr M, Homann C, Schmidt PF et al (2003) Fracture properties of the human mandible. Int J Legal Med 117:326–330CrossRefPubMedGoogle Scholar
  19. 19.
    Ruan JS, Khalil TB, King AI (1993) Finite element modelling of direct head impact. Proceedings of the 37th STAPP Car Crash Conference, San Antonio, USA, November 1993, pp 69–81Google Scholar
  20. 20.
    Zhang L, Yang KH, Dwarampudi R et al (2001) Recent advances in brain injury research: a new human head model development and validation. Proceedings of the 45th STAPP Car Crash Conference, San Antonio, USA, November 2001, pp 1–25Google Scholar
  21. 21.
    Bandak FA, Chan PC (1999) Influence of the subarachnoid cerebrospinal fluid layer on the dynamic response of the brain: an experimental and computing study. Proceedings of the 27th Human Subject Biomechanical Workshop, San Diego, USA, September 1999, pp 115–139Google Scholar
  22. 22.
    Newman J, Barr C, Beusenberg M, Fournier E, Shewchenko N, Welbourne E, Withnall C (2000) A new biomechanical assessment of mild traumatic brain injury. Part 2. Results and conclusions. Proceedings of the IRCOBI Conference, Isle of Man, UK, September 2000, pp 223–234Google Scholar
  23. 23.
    Yang KH, King AI (2003) A limited review of finite element models of development for brain injury biomechanics research. Int J Veh Des 31:116–130CrossRefGoogle Scholar
  24. 24.
    Bandak FA, Zhang AX, Dimasi F, Masiello P, Eppinger R (2001) SIMON: a simulated injury monitor; application to head injury assessment. Proceedings of the ESV Conference, Amsterdam, The Netherlands, September 2001, pp 1–7Google Scholar
  25. 25.
    Chinn BP, Doyle D, Otte D, Schuller E (1999) Motorcyclists head injury: mechanisms identified from accident reconstruction and helmet damage replication. Proceedings of the IRCOBI Conference, Barcelona, Spain, September 1999, pp 53–71Google Scholar
  26. 26.
    Willinger R, Baumgartner D (2003) Human head tolerance limits to specific injury mechanisms. Int J Crashworthiness 6:605–617CrossRefGoogle Scholar
  27. 27.
    Kang HS, Willinger R, Diaw B, Chinn B (1997) Validation of a 3D anatomic human head model and replication of head impact in motorcycle accident by finite element modelling. Proceedings of the 41st STAPP Car Crash Conference, Lake Buena Vista, USA, November 1997, pp 329–338Google Scholar
  28. 28.
    Anderson R (2000) A study of the biomechanics of axonal injury. Ph.D. dissertation, University of Adelaide, South AustraliaGoogle Scholar
  29. 29.
    Gurdjian ES, Webster A (1958) Head injury. Little and Brown, BostonGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jean-Sébastien Raul
    • 1
    • 3
  • Daniel Baumgartner
    • 2
  • Rémy Willinger
    • 2
  • Bertrand Ludes
    • 1
  1. 1.Institut de Médecine LégaleStrasbourgFrance
  2. 2.Institut de Mécanique des Fluides et des SolidesUMR 7507 ULP CNRSStrasbourgFrance
  3. 3.Institut de Médecine LégaleStrasbourgFrance

Personalised recommendations