International Journal of Legal Medicine

, Volume 118, Issue 3, pp 147–157 | Cite as

A multiplex allele-specific primer extension assay for forensically informative SNPs distributed throughout the mitochondrial genome

  • Peter M. Vallone
  • Rebecca S. Just
  • Michael D. Coble
  • John M. Butler
  • Thomas J. Parsons
Original Article


The typing of single nucleotide polymorphisms (SNPs) located throughout the mitochondrial genome (mtGenome) can help resolve individuals with an identical HV1/HV2 mitotype. A set of 11 SNPs selected for distinguishing individuals of the most common Caucasian HV1/HV2 mitotype were incorporated in an allele specific primer extension assay. The assay was optimized for multiplex detection of SNPs at positions 3010, 4793, 10211, 5004, 7028, 7202, 16519, 12858, 4580, 477 and 14470 in the mtGenome. Primers were designed to allow for simultaneous PCR amplification of 11 unique regions in the mtGenome and subsequent primer extension. By enzymatically incorporating fluorescently labeled dideoxynucleotides (ddNTPs) onto the 3’ end of the extension primer, detection can be accomplished with a capillary-based electrophoresis (CE) platform common in most forensic laboratories. The electrophoretic mobility for the extension primers was compared in denaturing POP4 and POP6 CE running buffers. Empirical adjustment of extension primer concentrations resulted in even signal intensity for the 11 loci probed. We demonstrate that the assay performs well for heteroplasmy and mixture detection, and for typical mtDNA casework samples with highly degraded DNA.


Mitochondrial DNA Capillary electrophoresis Allele-specific primer extension Single nucleotide polymorphism Multiplex PCR 



We thank Suzanne M. Barritt of AFDIL for discussion and comments on the manuscript, as well as for providing non-probative casework samples. Jill Appleby, Tracey Johnson, Danielle Goldstein, and Jennifer Kappeller of AFDIL also assisted in providing casework samples. Jennifer O’Callaghan, Jessica Saunier, Allison McClure, and Devon Pierce, AFDIL, provided technical laboratory or data analysis assistance. We thank Brion C. Smith, James C. Canik, and Kevin S. Carrol, AFDIL, for administrative, logistical, and moral support, and James P. Ross for computer support.


  1. 1.
    Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis—validation and use for forensic casework. Forensic Sci Rev 11:22–50Google Scholar
  2. 2.
    Coble MD, Just RS, O’Callaghan JE, Letmanyi IH, Peterson CT, Parsons TJ (2004) Single nucleotide polymorphisms over the entire mtDNA genome that increase the forensic power of testing in Caucasians. Int J Legal Med DOI: s00414-004-0427-6
  3. 3.
    Brandstätter A, Parsons TJ, Niederstätter H, Parson W (2003) Rapid screening of mtDNA coding region SNPs for the identification of Caucasian haplogroups. Int J Legal Med 117:291–298CrossRefPubMedGoogle Scholar
  4. 4.
    Parsons TJ, Coble MD (2001) Increasing the forensic discrimination of mitochondrial DNA testing through analysis of the entire mitochondrial DNA genome. Croatian Med J 42:304–309Google Scholar
  5. 5.
    Comas D, Reynolds R, Sajantila A (1999) Analysis of mtDNA HVRII in several human populations using an immobilised SSO probe hybridisation assay. Eur J Hum Genet 7:459–468PubMedGoogle Scholar
  6. 6.
    Ye F, Li MS, Taylor JD et al. (2001) Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification. Hum Mutat 17:305–316CrossRefPubMedGoogle Scholar
  7. 7.
    Taylor JD, Briley D, Nguyen Q et al. (2001) Flow cytometric platform for high-throughput single nucleotide polymorphism analysis. Biotechniques 30:661–669PubMedGoogle Scholar
  8. 8.
    Kaderali L, Deshpande A, Nolan JP, White PS (2003) Primer-design for multiplexed genotyping. Nucleic Acids Res 31:1796–1802CrossRefPubMedGoogle Scholar
  9. 9.
    Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5’ nuclease assay. Genet Anal 14:143–149Google Scholar
  10. 10.
    Ranade K, Chang MS, Ting CT et al. (2001) High-throughput genotyping with single nucleotide polymorphisms. Genome Res 11:1262–1268PubMedGoogle Scholar
  11. 11.
    Paracchini S, Arredi B, Chalk R, Tyler-Smith C (2002) Hierarchical high-throughput SNP genotyping of the human Y chromosome using MALDI-TOF mass spectrometry. Nucleic Acids Res 30:e27CrossRefPubMedGoogle Scholar
  12. 12.
    Tost J, Gut IG (2002) Genotyping single nucleotide polymorphisms by mass spectrometry. Mass Spectrom Rev 21:388–418CrossRefPubMedGoogle Scholar
  13. 13.
    Sauer S, Gut IG (2002) Genotyping single-nucleotide polymorphisms by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. J Chromatogr B AnalTechnol Biomed Life Sci 782:73–87CrossRefGoogle Scholar
  14. 14.
    Ross P, Hall L, Smirnov I, Haff L (1998) High level multiplex genotyping by MALDI-TOF mass spectrometry. Nat Biotechnol 16:1347–1351CrossRefPubMedGoogle Scholar
  15. 15.
    Ahmadian A, Gharizadeh B, Gustafsson AC, Sterky F, Nyren P, Uhlen M, Lundeberg J (2000) Single-nucleotide polymorphism analysis by pyrosequencing. Anal Biochem 280:103–110CrossRefPubMedGoogle Scholar
  16. 16.
    Alderborn A, Kristofferson A, Hammerling U (2000) Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res 10:1249–1258PubMedGoogle Scholar
  17. 17.
    Lee SD, Lee YS, Lee JB (2002) Polymorphism in the mitochondrial cytochrome b gene in Koreans: an additional marker for individual identification. Int J Legal Med 116:74–77PubMedGoogle Scholar
  18. 18.
    Butler JM (2001) Forensic DNA typing. Academic Press, San DiegoGoogle Scholar
  19. 19.
    Tully G, Sullivan KM, Nixon P, Stones RE, Gill P (1996) Rapid detection of mitochondrial sequence polymorphisms using multiplex solid-phase fluorescent minisequencing. Genomics 34:107–113CrossRefPubMedGoogle Scholar
  20. 20.
    Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147PubMedGoogle Scholar
  21. 21.
    Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  22. 22.
    Butler JM, Ruitberg CM, Vallone PM (2001) Capillary electrophoresis as a tool for optimization of multiplex PCR reactions. Fresenius J Anal Chem 369:200–205CrossRefPubMedGoogle Scholar
  23. 23.
    Schoske R, Vallone PM, Ruitberg CM, Butler JM (2003) Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. Anal Bioanal Chem 375:333–343PubMedGoogle Scholar
  24. 24.
    Owczarzy R, Vallone PM, Gallo FJ, Paner TM, Lane MJ, Benight AS (1997) Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers 44:217–239CrossRefPubMedGoogle Scholar
  25. 25.
    SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95:1460–1465CrossRefPubMedGoogle Scholar
  26. 26.
    Butler JM, Devaney JM, Marino MA, Vallone PM (2001) Quality control of PCR primers used in multiplex STR amplification reactions. Forensic Sci Int 119:87–96CrossRefPubMedGoogle Scholar
  27. 27.
    Cantor CR, Warshaw MM, Shapiro H (1970) Oligonucleotide interactions. 3. Circular dichroism studies of the conformation of deoxyoligonucleotides. Biopolymers 9:1059–1077PubMedGoogle Scholar
  28. 28.
    Gabriel MN, Huffine EF, Ryan JH, Holland MM, Parsons TJ (2001) Improved mtDNA sequence analysis of forensic remains using a “mini-primer set” amplification strategy. J Forensic Sci 46:247–253PubMedGoogle Scholar
  29. 29.
    Mehta AB, Vulliamy T, Gordon-Smith EC, Luzzatto L (1989) A new genetic polymorphism in the 16S ribosomal RNA gene of human mitochondrial DNA. Ann Hum Genet 53:303–310PubMedGoogle Scholar
  30. 30.
    Marzuki S, Noer AS, Letrit P, Thyagarajan D, Kapsa R, Utthanaphol P, Byrne E (1991) Normal variants of human mitochondrial DNA and translation products: the building of a reference database. Hum Genet 88:139–145PubMedGoogle Scholar
  31. 31.
    Innis MA, Gelfand DH, Sninsky JJ, White TJ (1990) PCR protocols: a guide to methods and application. Academic Press, San DiegoGoogle Scholar
  32. 32.
    Bell PA, Chaturvedi S, Gelfand CA et al. (2002) SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques Suppl :70–77Google Scholar
  33. 33.
    Wilson MR, DiZinno JA, Polanskey D, Replogle J, Budowle B (1995) Validation of mitochondrial DNA sequencing for forensic casework analysis. Int J Legal Med 108:68–74PubMedGoogle Scholar
  34. 34.
    Parker LT, Zakeri H, Deng Q, Spurgeon S, Kwok PY, Nickerson DA (1996) AmpliTaq DNA polymerase, FS dye-terminator sequencing: analysis of peak height patterns. Biotechniques 21:694–699PubMedGoogle Scholar
  35. 35.
    Tully LA, Parsons TJ, Steighner RJ, Holland MM, Marino MA, Prenger VL (2000) A sensitive DGGE assay reveals a high frequency of heteroplasmy in hypervariable region one of the human mitochondrial DNA control region. Am J Hum Genet 67:432–443CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Peter M. Vallone
    • 1
  • Rebecca S. Just
    • 2
  • Michael D. Coble
    • 2
  • John M. Butler
    • 1
  • Thomas J. Parsons
    • 2
  1. 1.Biotechnology DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Armed Forces DNA Identification Laboratory, RockvilleUSA

Personalised recommendations