Advertisement

Chromosoma

pp 1–11 | Cite as

Eight million years of maintained heterozygosity in chromosome homologs of cercopithecine monkeys

  • Doron Tolomeo
  • Oronzo Capozzi
  • Giorgia Chiatante
  • Luca Sineo
  • Takafumi Ishida
  • Nicoletta Archidiacono
  • Mariano RocchiEmail author
  • Roscoe StanyonEmail author
Original Article

Abstract

In the Cercopithecini ancestor two chromosomes, homologous to human chromosomes 20 and 21, fused to form the Cercopithecini specific 20/21 association. In some individuals from the genus Cercopithecus, this association was shown to be polymorphic for the position of the centromere, suggesting centromere repositioning events. We set out to test this hypothesis by defining the evolutionary history of the 20/21 association in four Cercopithecini species from three different genera. The marker order of the various 20/21 associations was established using molecular cytogenetic techniques, including an array of more than 100 BACs. We discovered that five different forms of the 20/21 association were present in the four studied Cercopithecini species. Remarkably, in the two Cercopithecus species, we found individuals in which one homolog conserved the ancestral condition, but the other homolog was highly rearranged. The phylogenetic analysis showed that the heterozygosity in these two species originated about 8 million years ago and was maintained for this entire arc of time, surviving multiple speciation events. Our report is a remarkable extension of Dobzhansky’s pioneering observation in Drosophila concerning the maintenance of chromosomal heterozygosity due to selective advantage. Dobzhansky’s hypothesis recently received strong support in a series of detailed reports on the fruit fly genome. Our findings are first extension to primates, indeed to Old World monkeys phylogenetically close to humans of an analogous situation. Our results have important implications for hypotheses on how chromosome rearrangements, selection, and speciation are related.

Keywords

Chromosomes Heterozygosity Primates Evolution Heterozygous advantage 

Notes

Acknowledgments

The authors would like to thank Lorenzo Parenti and Laura Eccel whose master theses at the University of Florence provided background information on CAL and CPE karyotypes and painting patterns. We thank Fengtang Yang for his supervision of Lorenzo Parenti during his Erasmus Placement stage at the Welcome Centre (Cambridge, UK) during which among other techniques, he learned and performed M-FISH on CPE and CAL metaphases. The authors thank Vito Ruffino (Bioparco di Sicilia) for the access to C. petaurista.

Funding information

This work was supported by PRIN (Progetti di Interesse Nazionale) research grant (grant number 2015RA7XZS), from the Italian Ministry of Education and University, to NA, MR, and RS.

Supplementary material

412_2020_731_MOESM1_ESM.doc (6.3 mb)
ESM 1 (DOC 6439 kb)
412_2020_731_MOESM2_ESM.xlsx (35 kb)
ESM 2 (XLSX 34 kb)
412_2020_731_MOESM3_ESM.xlsx (29 kb)
ESM 3 (XLSX 28 kb)

References

  1. Armengol L, Pujana MA, Cheung J, Scherer SW, Estivill X (2003) Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements. Hum Mol Genet 12:2201–2208PubMedCrossRefGoogle Scholar
  2. Caballin MR, Miro R, Ponsa M, Florit F, Massa C, Egozcue J (1980) Banding patterns of the chromosome of Cercopithecus petaurista (Schreber, 1775): comparison with other primate species. Folia Primatol (Basel) 34:278–285CrossRefGoogle Scholar
  3. Capozzi O, Stanyon R, Archidiacono N, Ishida T, Romanenko SA, Rocchi M (2018) Rapid emergence of independent “chromosomal lineages” in silvered-leaf monkey triggered by Y/autosome translocation. Sci Rep 8:3250PubMedPubMedCentralCrossRefGoogle Scholar
  4. Catacchio CR, Maggiolini FAM, D'Addabbo P, Bitonto M, Capozzi O, Signorile ML, Miroballo M, Archidiacono N, Eichler EE, Ventura M, Antonacci F (2018) Inversion variants in human and primate genomes. Genome Res 28:910–920PubMedPubMedCentralCrossRefGoogle Scholar
  5. de Boer LEM, Seuanez H (1982) The chromosomes of the orangutan and their relevance to the conservation of the species. In: Boer LEMd (ed) the orangutan its biology and conservation. W. Jumk pp 135-170Google Scholar
  6. Dobzhansky T (1944) Chromosomal races in Drosophila pseudoobscura and Drosophila persimilis., Carnegie Inst. Washington Publ., 554, 47-144Google Scholar
  7. Dobzhansky T (1950) Genetics of natural populations XIX Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35:288–302PubMedPubMedCentralGoogle Scholar
  8. Faria R, Navarro A (2010) Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol 25:660–669PubMedCrossRefGoogle Scholar
  9. Finelli P, Stanyon R, Plesker R, Ferguson-Smith MA, O'Brien PC, Wienberg J (1999) Reciprocal chromosome painting shows that the great difference in diploid number between human and African green monkey is mostly due to non-Robertsonian fissions. Mamm Genome 10:713–718PubMedCrossRefGoogle Scholar
  10. Fuller ZL, Haynes GD, Richards S, Schaeffer SW (2017) Genomics of natural populations: evolutionary forces that establish and maintain gene arrangements in Drosophila pseudoobscura. Mol Ecol 26:6539–6562PubMedCrossRefGoogle Scholar
  11. Fuller ZL, Koury SA, Phadnis N, Schaeffer SW (2019) How chromosomal rearrangements shape adaptation and speciation: case studies in Drosophila pseudoobscura and its sibling species Drosophila persimilis. Mol Ecol 28:1283–1301PubMedCrossRefGoogle Scholar
  12. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK, Batzer MA, Bustamante CD, Eichler EE, Hahn MW, Hardison RC, Makova KD, Miller W, Milosavljevic A, Palermo RE, Siepel A, Sikela JM, Attaway T, Bell S, Bernard KE, Buhay CJ, Chandrabose MN, Dao M, Davis C, Delehaunty KD, Ding Y, Dinh HH, Dugan-Rocha S, Fulton LA, Gabisi RA, Garner TT, Godfrey J, Hawes AC, Hernandez J, Hines S, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Kirkness EF, Cree A, Fowler RG, Lee S, Lewis LR, Li Z, Liu YS, Moore SM, Muzny D, Nazareth LV, Ngo DN, Okwuonu GO, Pai G, Parker D, Paul HA, Pfannkoch C, Pohl CS, Rogers YH, Ruiz SJ, Sabo A, Santibanez J, Schneider BW, Smith SM, Sodergren E, Svatek AF, Utterback TR, Vattathil S, Warren W, White CS, Chinwalla AT, Feng Y, Halpern AL, Hillier LW, Huang X, Minx P, Nelson JO, Pepin KH, Qin X, Sutton GG, Venter E, Walenz BP, Wallis JW, Worley KC, Yang SP, Jones SM, Marra MA, Rocchi M, Schein JE, Baertsch R, Clarke L, Csuros M, Glasscock J, Harris RA, Havlak P, Jackson AR, Jiang H, Liu Y, Messina DN, Shen Y, Song HX, Wylie T, Zhang L, Birney E, Han K, Konkel MK, Lee J, Smit AF, Ullmer B, Wang H, Xing J, Burhans R, Cheng Z, Karro JE, Ma J, Raney B, She X, Cox MJ, Demuth JP, Dumas LJ, Han SG, Hopkins J, Karimpour-Fard A, Kim YH, Pollack JR, Vinar T, Addo-Quaye C, Degenhardt J, Denby A, Hubisz MJ, Indap A, Kosiol C, Lahn BT, Lawson HA, Marklein A, Nielsen R, Vallender EJ, Clark AG, Ferguson B, Hernandez RD, Hirani K, Kehrer-Sawatzki H, Kolb J, Patil S, Pu LL, Ren Y, Smith DG, Wheeler DA, Schenck I, Ball EV, Chen R, Cooper DN, Giardine B, Hsu F, Kent WJ, Lesk A, Nelson DL, O'Brien WE, Prufer K, Stenson PD, Wallace JC, Ke H, Liu XM, Wang P, Xiang AP, Yang F, Barber GP, Haussler D, Karolchik D, Kern AD, Kuhn RM, Smith KE, Zwieg AS (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234PubMedCrossRefGoogle Scholar
  13. Giglio S, Broman KW, Matsumoto N, Calvari V, Gimelli G, Neumann T, Ohashi H, Voullaire L, Larizza D, Giorda R, Weber JL, Ledbetter DH, Zuffardi O (2001) Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet 68:874–883PubMedPubMedCentralCrossRefGoogle Scholar
  14. Giglio S, Calvari V, Gregato G, Gimelli G, Camanini S, Giorda R, Ragusa A, Guerneri S, Selicorni A, Stumm M, Tonnies H, Ventura M, Zollino M, Neri G, Barber J, Wieczorek D, Rocchi M, Zuffardi O (2002) Heterozygous submicroscopic inversions involving olfactory receptor-gene clusters mediate the recurrent t(4;8)(p16;p23) translocation. Am J Hum Genet 71:276–285PubMedPubMedCentralCrossRefGoogle Scholar
  15. Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, Sabin R, Gilissen E, Sonet G, Nagy ZT, Lenglet G, Mayer F, Savolainen V (2013) Next-generation museomics disentangles one of the largest primate radiations. Syst Biol 62:539–554PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hirai H, Kawamoto Y, Suleman MA, Mwenda JM (2000) Variant centromere lacking specific molecular traits in the Sykes monkey. Chromosom Res 8:357–359CrossRefGoogle Scholar
  17. Imai HT, Wada MY, Hirai H, Matsuda Y, Tsuchiya K (1999) Cytological, genetic and evolutionary functions of chiasmata based on chiasma graph analysis. J Theor Biol 198:239–257PubMedCrossRefGoogle Scholar
  18. Karageorgiou C, Gamez-Visairas V, Tarrio R, Rodriguez-Trelles F (2019) Long-read based assembly and synteny analysis of a reference Drosophila subobscura genome reveals signatures of structural evolution driven by inversions recombination-suppression effects. BMC Genomics 20:223PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kenig B, Kurbalija Novicic Z, Patenkovic A, Stamenkovic-Radak M, Andelkovic M (2015) Adaptive role of inversion polymorphism of Drosophila subobscura in Lead stressed environment. PLoS One 10:e0131270PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F, Haugen E, Zerr T, Yamada NA, Tsang P, Newman TL, Tuzun E, Cheng Z, Ebling HM, Tusneem N, David R, Gillett W, Phelps KA, Weaver M, Saranga D, Brand A, Tao W, Gustafson E, McKernan K, Chen L, Malig M, Smith JD, Korn JM, McCarroll SA, Altshuler DA, Peiffer DA, Dorschner M, Stamatoyannopoulos J, Schwartz D, Nickerson DA, Mullikin JC, Wilson RK, Bruhn L, Olson MV, Kaul R, Smith DR, Eichler EE (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453:56–64PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kirkpatrick M (2010) How and why chromosome inversions evolve. PLoS Biol 8:e1000501PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kupper C, Stocks M, Risse JE, Dos Remedios N, Farrell LL, McRae SB, Morgan TC, Karlionova N, Pinchuk P, Verkuil YI, Kitaysky AS, Wingfield JC, Piersma T, Zeng K, Slate J, Blaxter M, Lank DB, Burke T (2016) A supergene determines highly divergent male reproductive morphs in the ruff. Nat Genet 48:79–83PubMedCrossRefGoogle Scholar
  23. Lamichhaney S, Fan G, Widemo F, Gunnarsson U, Thalmann DS, Hoeppner MP, Kerje S, Gustafson U, Shi C, Zhang H, Chen W, Liang X, Huang L, Wang J, Liang E, Wu Q, Lee SM, Xu X, Hoglund J, Liu X, Andersson L (2016) Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet 48:84–88PubMedCrossRefGoogle Scholar
  24. Lindtke D, Lucek K, Soria-Carrasco V, Villoutreix R, Farkas TE, Riesch R, Dennis SR, Gompert Z, Nosil P (2017) Long-term balancing selection on chromosomal variants associated with crypsis in a stick insect. Mol Ecol 26:6189–6205PubMedCrossRefGoogle Scholar
  25. Lo Bianco S, Masters JC, Sineo L (2017) The evolution of the Cercopithecini: a (post)modern synthesis. Evol Anthropol 26:336–349PubMedCrossRefGoogle Scholar
  26. Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, Yang SP, Wang Z, Chinwalla AT, Minx P, Mitreva M, Cook L, Delehaunty KD, Fronick C, Schmidt H, Fulton LA, Fulton RS, Nelson JO, Magrini V, Pohl C, Graves TA, Markovic C, Cree A, Dinh HH, Hume J, Kovar CL, Fowler GR, Lunter G, Meader S, Heger A, Ponting CP, Marques-Bonet T, Alkan C, Chen L, Cheng Z, Kidd JM, Eichler EE, White S, Searle S, Vilella AJ, Chen Y, Flicek P, Ma J, Raney B, Suh B, Burhans R, Herrero J, Haussler D, Faria R, Fernando O, Darre F, Farre D, Gazave E, Oliva M, Navarro A, Roberto R, Capozzi O, Archidiacono N, Valle GD, Purgato S, Rocchi M, Konkel MK, Walker JA, Ullmer B, Batzer MA, Smit AF, Hubley R, Casola C, Schrider DR, Hahn MW, Quesada V, Puente XS, Ordonez GR, Lopez-Otin C, Vinar T, Brejova B, Ratan A, Harris RS, Miller W, Kosiol C, Lawson HA, Taliwal V, Martins AL, Siepel A, Roychoudhury A, Ma X, Degenhardt J, Bustamante CD, Gutenkunst RN, Mailund T, Dutheil JY, Hobolth A, Schierup MH, Ryder OA, Yoshinaga Y, de Jong PJ, Weinstock GM, Rogers J, Mardis ER, Gibbs RA, Wilson RK (2011) Comparative and demographic analysis of orangutan genomes. Nature 469:529–533PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ma NS, Elliott MW, Morgan L, Miller A, Jones TC (1976) Translocation of Y chromosome to an autosome in the Bolivian owl monkey, Aotus. Am J Phys Anthropol 45:191–202PubMedCrossRefGoogle Scholar
  28. Macchia G, Severgnini M, Purgato S, Tolomeo D, Casciaro H, Cifola I, L'Abbate A, Loverro A, Palumbo O, Carella M, Bianchini L, Perini G, De Bellis G, Mertens F, Rocchi M, Storlazzi CT (2018) The hidden genomic and transcriptomic plasticity of Giant marker chromosomes in cancer. Genetics 208:951–961PubMedCrossRefGoogle Scholar
  29. Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282PubMedPubMedCentralCrossRefGoogle Scholar
  30. Misceo D, Cardone MF, Carbone L, D'Addabbo P, de Jong PJ, Rocchi M, Archidiacono N (2005) Evolutionary history of chromosome 20. Mol Biol Evol 22:360–366PubMedCrossRefGoogle Scholar
  31. Moore CM, Janish C, Eddy CA, Hubbard GB, Leland MM, Rogers J (1999) Cytogenetic and fertility studies of a rheboon, rhesus macaque (Macaca mulatta) x baboon (Papio hamadryas) cross: further support for a single karyotype nomenclature. Am J Phys Anthropol 110:119–127PubMedCrossRefGoogle Scholar
  32. Moulin S, Gerbault-Seureau M, Dutrillaux B, Richard FA (2008) Phylogenomics of African guenons. Chromosom Res 16:783–799CrossRefGoogle Scholar
  33. Nergadze SG, Piras FM, Gamba R, Corbo M, Cerutti F, McCarter JGW, Cappelletti E, Gozzo F, Harman RM, Antczak DF, Miller D, Scharfe M, Pavesi G, Raimondi E, Sullivan KF, Giulotto E (2018) Birth, evolution, and transmission of satellite-free mammalian centromeric domains. Genome Res 28:789–799PubMedPubMedCentralCrossRefGoogle Scholar
  34. Perelman P, Johnson WE, Roos C, Seunez HN, Horvath JE, Moreira MAM, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MPC, Silva A, O'Brien SJ, Pecon-Slattery J (2011) A molecular phylogeny of living primates. PLoS Genet 7:e1001342PubMedPubMedCentralCrossRefGoogle Scholar
  35. Puig M, Casillas S, Villatoro S, Caceres M (2015) Human inversions and their functional consequences. Brief Funct Genomics 14:369–379PubMedPubMedCentralCrossRefGoogle Scholar
  36. Rocchi M, Archidiacono N, Schempp W, Capozzi O, Stanyon R (2012) Centromere repositioning in mammals. Heredity 108:59–67PubMedCrossRefGoogle Scholar
  37. Rogers J, Raveendran M, Harris RA, Mailund T, Leppälä K, Athanasiadis G, Schierup MH, Cheng J, Munch K, Walker JA, Konkel MK, Jordan VE, Steely CJ, Beckstrom TOE, Bergey C, Burrell A, Schrempf D, Noll A, Kothe M, Kopp GH, Liu Y, Murali S, Billis K, Martin FJ, Muffato M, Cox LA, Else J, Disotell T, Muzny DM, Phillips-Conroy J, Aken B, Eichler EE, Marques-Bonet T, Kosiol C, Batzer MA, Hahn MW, Tung J, Zinner D, Roos C, Jolly CJ, Gibbs RA, Worley KC, Archidiacono N, Capozzi O, Catacchio CR, Dinh HH, Doddapaneni HV, Han Y, Huddleston J, Jhangiani SN, Karimpour-Fard A, Korchina V, Kovar CL, Kuderna L, Lee SL, Liu X, Marra-Campanale A, Mason CE, Montero MM, Pagel KA, Palazzo A, Pecotte J, Pejaver V, Pipes L, Quick VS, Radivojac P, Raja A, Raney BJ, Rice K, Rocchi M, Sikela JM, Stanyon R, Thomas GWC, Ventura M, Vilgalys TP, Vinar T, Walter L (2019) The comparative genomics and complex population history of Papio baboons. Sci Adv 5:eaau6947PubMedPubMedCentralCrossRefGoogle Scholar
  38. Sineo L (1990) The banded karyotype of Cercopithecus mitis maesi compared with the karyotypes of C. albogularis samango and C. nictitans stampflii. Int J Primatol 11:541–552CrossRefGoogle Scholar
  39. Solari AJ, Rahn MI (2005) Fine structure and meiotic behaviour of the male multiple sex chromosomes in the genus Alouatta. Cytogenet Genome Res 108:262–267PubMedCrossRefGoogle Scholar
  40. Soto IM, Soto EM, Carreira VP, Hurtado J, Fanara JJ, Hasson E (2010) Geographic patterns of inversion polymorphism in the second chromosome of the cactophilic Drosophila buzzatii from northeastern Argentina. J Insect Sci 10:181PubMedPubMedCentralCrossRefGoogle Scholar
  41. Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL, Stadler T, Steiner C, Ryder OA, Janecka JE, Fisher CA, Murphy WJ (2012) Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS One 7:e49521PubMedPubMedCentralCrossRefGoogle Scholar
  42. Stanyon R, Stone G (2008) Phylogenomic analysis by chromosome sorting and painting. Methods Mol Biol 422:13–29PubMedCrossRefGoogle Scholar
  43. Stanyon R, Bruening R, Stone G, Shearin A, Bigoni F (2005) Reciprocal painting between humans, De Brazza's and patas monkeys reveals a major bifurcation in the Cercopithecini phylogenetic tree. Cytogenet Genome Res 108:175–182PubMedCrossRefGoogle Scholar
  44. Stanyon R, Rocchi M, Capozzi O, Roberto R, Misceo D, Ventura M, Cardone M, Bigoni F, Archidiacono N (2008) Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres. Chromosom Res 16:17–39CrossRefGoogle Scholar
  45. Stanyon R, Rocchi M, Bigoni F, Archidiacono N (2012) Evolutionary molecular cytogenetics of catarrhine primates: past, present and future. Cytogenet Genome Res 137:273–284PubMedCrossRefGoogle Scholar
  46. Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G, Barnard J, Baker A, Jonasdottir A, Ingason A, Gudnadottir VG, Desnica N, Hicks A, Gylfason A, Gudbjartsson DF, Jonsdottir GM, Sainz J, Agnarsson K, Birgisdottir B, Ghosh S, Olafsdottir A, Cazier JB, Kristjansson K, Frigge ML, Thorgeirsson TE, Gulcher JR, Kong A, Stefansson K (2005) A common inversion under selection in Europeans. Nat Genet 37:129–137PubMedCrossRefGoogle Scholar
  47. Tesler G (2002) GRIMM: genome rearrangements web server. Bioinformatics 18:492–493PubMedCrossRefGoogle Scholar
  48. Toder R, O'Neill RJ, Wienberg J, O'Brien PC, Voullaire L, Marshall-Graves JA (1997) Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system. Mamm Genome 8:418–422PubMedCrossRefGoogle Scholar
  49. Tolomeo D, Capozzi O, Stanyon RR, Archidiacono N, D'Addabbo P, Catacchio CR, Purgato S, Perini G, Schempp W, Huddleston J, Malig M, Eichler EE, Rocchi M (2017) Epigenetic origin of evolutionary novel centromeres. Sci Rep 7:41980PubMedPubMedCentralCrossRefGoogle Scholar
  50. Tosi AJ, Hirai H (2017) X chromosome introgression and recombination in the cephus group of Cercopithecus monkeys. Cytogenet Genome Res 153:29–35PubMedCrossRefGoogle Scholar
  51. Ventura M, Antonacci F, Cardone MF, Stanyon R, D'Addabbo P, Cellamare A, Sprague LJ, Eichler EE, Archidiacono N, Rocchi M (2007) Evolutionary formation of new centromeres in macaque. Science 316:243–246PubMedCrossRefGoogle Scholar
  52. Wellenreuther M, Bernatchez L (2018) Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol 33:427–440PubMedCrossRefGoogle Scholar
  53. Willard HF (1991) Evolution of alpha satellite. Curr Opin Genet Dev 1:509–514PubMedCrossRefGoogle Scholar
  54. Wilson AC, Bush GL, Case SM, King MC (1975) Social structuring of mammalian populations and rate of chromosomal evolution. Proc Natl Acad Sci U S A 72:5061–5065PubMedPubMedCentralCrossRefGoogle Scholar
  55. Xiaobo F, Pinthong K, Mkrtchyan H, Siripiyasing P, Kosyakova N, Supiwong W, Tanomtong A, Chaveerach A, Liehr T, de Bello Cioffi M, Weise A (2013) First detailed reconstruction of the karyotype of Trachypithecus cristatus (Mammalia: Cercopithecidae). Mol Cytogenet 6:58PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of BiologyUniversity of FlorenceFlorenceItaly
  2. 2.Department of BiologyUniversity of BariBariItaly
  3. 3.Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
  4. 4.Department of Biological SciencesGraduate School of Science, University of TokyoTokyoJapan

Personalised recommendations