Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars


Modern sugarcane cultivars are highly polyploid and derived from the hybridization of Saccharum officinarum and S. spontaneum, thus leading to singularly complex genomes. The complex genome has hindered the study of genomic structures. Here, we adopted a computational strategy to isolate highly repetitive and abundant sequences in either S. officinarum or S. spontaneum and isolated four S. spontaneum-enriched retrotransposons. Fluorescence in situ hybridization (FISH) assays with these repetitive DNA sequences generated whole-genome painting signals for S. spontaneum but not for S. officinarum. We demonstrated that these repetitive sequence-based probes distinguish the parental S. spontaneum genome in hybrids derived from crosses between it and S. officinarum. A cytological analysis of 14 modern sugarcane cultivars revealed that the percentages of chromosomes with introgressive S. spontaneum fragments ranged from 11.9 to 40.9% and substantially exceeded those determined for previously investigated cultivars (5–13%). The comparatively higher percentages of introgressive S. spontaneum fragments detected in the aforementioned cultivars indicate frequent recombination between parental genomes. Here, we present the application of our strategy to isolate species-specific cytological markers. This information may help to elucidate complex plant genomic structures and trace their evolutionary histories.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Albert PS, Zhang T, Semrau K, Rouillard JM, Kao YH, Wang CR, Danilova TV, Jiang J, Birchler JA (2019) Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc Natl Acad Sci U S A 116:1679–1685

  2. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

  3. Bremer G (1923) A cytological investigation of some species and species hybrids within the genus Saccharum. Genetica 5:97–148

  4. Cuadrado A, Acevedo R, Moreno Díaz de la Espina S, Jouve N, de la Torre C (2004) Genome remodelling in three modern S. officinarum × S. spontaneum sugarcane cultivars. J Exp Bot 55:847–854

  5. Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 7–84

  6. D'Hont A (2005) Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

  7. D'Hont A, Lu YH, Feldmann P, Glaszmann JC (1993) Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugar Cane 1:12–25

  8. D'Hont A, Rao PS, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC (1995) Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor Appl Genet 91:320–326

  9. D'Hont A, Grivet L, Feldmann P, Glaszmann JC, Rao S, Berding N (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genomics 250:405–413

  10. D'Hont A, Paulet F, Glaszmann JC (2002) Oligoclonal interspecific origin of ‘north Indian’ and ‘Chinese’ sugarcanes. Chromosom Res 10:253–262

  11. Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C, Costet L, Yahiaoui N, Healey A, Sims D, Cherukuri Y, Sreedasyam A, Kilian A, Chan A, Van Sluys MA, Swaminathan K, Town C, Berges H, Simmons B, Glaszmann JC, van der Vossen E, Henry R, Schmutz J, D'Hont A (2018) A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun 9:2638

  12. Guimaraes CT, Sills GR, Sobral BW (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci U S A 94:14261–14266

  13. Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J (2015) Chromosome-specific painting in cucumis species using bulked oligonucleotides. Genetics 200:771–779

  14. Han J, Masonbrink RE, Shan W, Song F, Zhang J, Yu W, Wang K, Wu Y, Tang H, Wendel JF, Wang K (2016) Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton. Plant J 88:992–1005

  15. Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194

  16. Jannoo N, Grivet L, Seguin M, Paulet F, Domaingue R, Rao PS, Dookun A, D'Hont A, Glaszmann JC (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184

  17. Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

  18. Koo D-H, Jiang J (2009) Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation. Plant J 59:509–516

  19. Lennoux CG (1939) Sugarcane collection in New Guinea during 1937. Proc Int Soc Sugar Cane Technol 6:171–182

  20. Li Y, Zuo S, Zhang Z, Li Z, Han J, Chu Z, Hasterok R, Wang K (2018) Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus. Plant J 93:1088–1101

  21. Lu YH, D'Hont A, Walker DIT, Rao PS, Feldmann P, Glaszmann JC (1994) Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78:7–18

  22. Marin I, Llorens C (2000) Ty3/gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol 17:1040–1049

  23. Meng Z, Zhang Z, Yan T, Lin Q, Wang Y, Huang W, Huang Y, Li Z, Yu Q, Wang J, Wang K (2018) Comprehensively characterizing the cytological features of Saccharum spontaneum by the development of a complete set of chromosome-specific oligo probes. Front Plant Sci 9:1624

  24. Ming R, Moore PH, Wu K-K, D'Hont A, Glaszmann JC, Tew TL, Mirkov TE, da Silva J, Jifon J, Rai M, Schnell RJ, Brumbley SM, Lakshmanan P, Comstock JC, Paterson AH (2010) Sugarcane improvement through breeding and biotechnology. Plant breeding reviews. Wiley, Hoboken, pp 15–118

  25. Novak P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793

  26. Piperidis G, D'Hont A, Hogarth DM (2001) Chromosome composition analysis of various Saccharum interspecific hybrids by genomic in situ hybridisation (GISH). International Society of Sugar Cane Technologists Proceedings of the XXIV Congress, Brisbane, Australia, 17-21 September 2001 volume 2. pp 565-566

  27. Piperidis G, Piperidis N, D'Hont A (2010) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Gen Genomics 284:65–73

  28. Schenck S, Crepeau MW, Wu KK, Moore PH, Yu Q, Ming R (2004) Genetic diversity and relationships in native Hawaiian Saccharum officinarum sugarcane. J Hered 95:327–331

  29. Telesnitsky A, Goff SP (1997) Reverse transcriptase and the generation of retroviral DNA. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)

  30. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

  31. Wang K, Guo W, Zhang T (2007) Development of one set of chromosome-specific microsatellite-containing BACs and their physical mapping in Gossypium hirsutum L. Theor Appl Genet 115:675–682

  32. Wang K, Yang Z, Shu C, Hu J, Lin Q, Zhang W, Guo W, Zhang T (2009) Higher axial-resolution and sensitivity pachytene fluorescence in situ hybridization protocol in tetraploid cotton. Chromosom Res 17:1041–1050

  33. Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramirez-Gonzalez RH, De Oliveira R, International Wheat Genome Sequencing C, KFX M, Paux E, Choulet F (2018) Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol 19:103

  34. Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:W265–W268

  35. Yang X, Song J, Todd J, Peng Z, Paudel D, Luo Z, Ma X, You Q, Hanson E, Zhao Z, Zhao Y, Zhang J, Ming R, Wang J (2019) Target enrichment sequencing of 307 germplasm accessions identified ancestry of ancient and modern hybrids and signatures of adaptation and selection in sugarcane (Saccharum spp.), a ‘sweet’ crop with ‘bitter’ genomes. Plant Biotechnol J 17:488–498

  36. Zhang W, Zuo S, Li Z, Meng Z, Han J, Song J, Pan YB, Wang K (2017) Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum. Sci Rep 7:41659

  37. Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai CM, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson DR, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen JK, Wang L, Yu L, Xin Y, Ge L, Arro J, Han JO, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lv M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana SR, Huss SE, Yang X, Sharma A, Trujillo JH, Martinez MC, Hudson M, Riascos JJ, Schuler M, Chen LQ, Braun DM, Li L, Yu Q, Wang J, Wang K, Schatz MC, Heckerman D, Van Sluys MA, Souza GM, Moore PH, Sankoff D, VanBuren R, Paterson AH, Nagai C, Ming R (2018) Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet 50:1565–1573

  38. Zhang J, Zhang Q, Li L, Tang H, Zhang Q, Chen Y, Arrow J, Zhang X, Wang A, Miao C, Ming R (2019) Recent polyploidization events in three Saccharum founding species. Plant Biotechnol J 17:264–274

Download references


This research was supported by the National Natural Science Foundation of China (31771862) and International cooperation project of Fujian Agriculture and Forestry University (KXGH17002).

Author information

KW and ZW acquired financial support and provided overall direction of the project. KW, ZW, and YH designed the research. YH, HC, SM, and GY performed the experiments. JH and YZ conducted the bioinformatic analysis. KW, ZW, and YH analyzed the data and wrote the manuscript.

Correspondence to Zonghua Wang or Kai Wang.

Ethics declarations

The authors declare that this paper complies with all relevant ethical standards.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 173 kb)


(PDF 231 kb)


(PDF 319 kb)


(PDF 57 kb)


(DOCX 23 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Chen, H., Han, J. et al. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars. Chromosoma 129, 45–55 (2020). https://doi.org/10.1007/s00412-019-00729-1

Download citation


  • Sugarcane
  • Species-specific abundant
  • Retrotransposons
  • Genome structure
  • Fluorescence in situ hybridization